
1

CS 3204
Operating Systems

Godmar Back

Lecture 16

2/22/2006CS 3204 Spring 2006 2

Announcements
• Project 1 is due Feb 27, 11:59pm

– 5 days left
– Should be working on priority donation & BSD 

scheduler now
– Can now attempt to parallelize some development

• Merge early & often, regression test
– priority donation: extra credit for handling & testing 

donation + priority change
– fixed-point layer: use at least 14 binary digits after 

period.
• Office hours this week: 3-4 MWR, 4-5 F
• Reading assignments: Stallings Chapter 9.1-9.4

Deadlock

Continued

2/22/2006CS 3204 Spring 2006 4

Deadlocks, more formally

• 4 necessary conditions
1) Exclusive Access
2) Hold and Wait
3) No Preemption
4) Circular Wait

• Will look at strategies to
– Prevent
– Avoid
– Detect & break deadlocks

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Allocation Graph
R → P Assignment
P → R Request

R1

P1 P2 P3 P4

R2

R3

R4

Variant: removing resources
creates “wait-for” graph

2/22/2006CS 3204 Spring 2006 5

Multi-Unit Resources

• Note: Cycle, but no deadlock!

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

R1

P1 P3 P4

R2

R3

R4

P2

2/22/2006CS 3204 Spring 2006 6

Deadlock Detection
• For reusable resources

– If each resource has exactly one unit, deadlock iff
cycle

– If each resource has multiple units, existence of cycle 
may or may not mean deadlock

• Must use reduction algorithm to determine if deadlock exists 
(Intuition: remove processes that don’t have request edges, 
return their resource units and remove assignment edges, 
assign resources to remove request edges, repeat until out of 
processes without request edges. – If entire graph reduces to 
empty graph, no deadlock.)

• For consumable resources 
– analog algorithm possible

• Q.: What to do once deadlock is detected?



2

2/22/2006CS 3204 Spring 2006 7

Deadlock Recovery

• Preempt resources (if possible)
• Back processes up to a checkpoint

– Requires checkpointing or transactions 
(typically expensive)

• Kill processes involved until deadlock 
is resolved

• Kill all processes 
involved

• Reboot

In
cr

ea
si

ng
 S

ev
er

ity

2/22/2006CS 3204 Spring 2006 8

Killing Threads or Processes
• Extremely difficult issue:

– When is it safe to kill a thread?
• Consider:

thread_func()
{
while (!done) {

lock_acquire(&lock);
// access shared state
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
// access shared state
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
p = queue.get();
queue.put(p);
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
p = queue.get();
queue.put(p);
lock_release(&lock);

}
}

What if 
thread is 

killed 
there?

• Must guarantee full resource reclamation & consistency 
of all surviving system data structures

2/22/2006CS 3204 Spring 2006 9

Deadlock Prevention (1)
• Idea: remove one of the necessary conditions!
• (C1) (Don’t require) Exclusive Access

– Duplicate resource or make it shareable (where 
possible)

• (C2) (Avoid) Hold and Wait
– Request all resources at once

• hard to know in modular system
– two-phase locking: Drop all resources if additional 

request cannot be immediately granted – retry later
• requires “try_lock” facility
• can be inefficient if lots of retries

2/22/2006CS 3204 Spring 2006 10

Deadlock Prevention (2)
• (C3) (Allow) Preemption

– Take resource away from process
• Difficult: how should process react?

– Virtualize resource so it can be taken away
• Requires saving & restoring resource’s state

• (C4) (Avoid) Circular Wait
– Use partial ordering

• Requires mapping to domain that provides an 
ordering function (addresses often work!)

2/22/2006CS 3204 Spring 2006 11

Deadlock Avoidance
• Don’t grant resource request if deadlock could occur in 

future
– Or don’t admit process at all

• Banker’s Algorithm (Dijkstra 1965, see book)
– Avoids “unsafe” states that might lead to deadlock
– Need to know what future resource demands are (“credit lines” of 

all customers)
– Need to capture all dependencies (no additional synchronization 

requirements – “loans” can be called back if needed)
• Mainly theoretical

– Impractical assumptions
– Tends to be overly conservative – inefficient use of resources

2/22/2006CS 3204 Spring 2006 12

Deadlock in the Real World
• Most common strategy of handling deadlock 

– Test: fix all deadlocks detected during testing
– Deploy: if deadlock happens, kill and rerun (easy!)

• If it happens too often, or reproducibly, add deadlock 
detection code (see next slide for how to do that in Pintos)

• Weigh cost of preventing vs cost of (re-) 
occurring

• Static analysis tools detects some kinds of 
deadlocks before they occur
– Example: Microsoft Driver Verifier
– Idea: monitor order in which locks are taken, flag if 

not consistent lock order



3

2/22/2006CS 3204 Spring 2006 13

Deadlock in Pintos
• How would you implement a deadlock detection algorithm for 

Pintos?
• Could check that all threads are blocked, and none is blocked on

console or disk
• If that happens, provide diagnostics; dump backtraces of all threads

– Problem 1: can only get backtrace of currently running thread
– Problem 2: must implement a version of debug_backtrace() based 

entirely on serial_putc() (printf requires ability to take console lock, so 
won’t always work)

– Set flag “exit_all_threads”
– Unblock all threads that are blocked
– In schedule_tail, check “exit_all_threads” flag and dump backtrace if so, 

then thread_exit()
• Last thread is idle_thread, which calls PANIC()

• Can be done in < 100lines of code.
• Alternatively, use gdb macros I posted on forum & website


