
1

CS 3204
Operating Systems

Godmar Back

Lecture 15

2/20/2006CS 3204 Spring 2006 2

Announcements
• Project 1 is due Feb 27, 11:59pm

– 7 days left
– Should have finished alarm clock by now
– Should have finished basic priority

• priority-change, -preempt, -fifo, -sema, -condvar
– Should have started on remaining parts
– Can now attempt to parallelize some development

• priority donation
• fixed-point layer: use at least 14 binary digits after period.
• advanced scheduler

– Merge early & often, regression test
• Office hours this week: 3-4 MWR, 4-5 F
• Reading assignments: Stallings Chapter 6 & some of 9

2/20/2006CS 3204 Spring 2006 3

Monitors in Java (revisited)
• Recall: Uses single

condition variable
implicitly associated with
buffer object

• This is correct, though,
since:
– Buffer can have either

waiting consumers or
waiting producers, but
never both – hence notify()
will always reach the right
thread!

• Possible optimization:
only notify() if condition
changes

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
if (buffer_size() == 1) this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
if (buffer_size() == CAPACITY-1)

this.notify();
}

}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
if (buffer_size() == 1) this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
if (buffer_size() == CAPACITY-1)

this.notify();
}

}Q.: Think of scenarios when using notify() & a shared condition variable fails

2/20/2006CS 3204 Spring 2006 4

Optimistic Concurrency Control
• Correction to slide in last lecture: “retry” in lock-

free synchronization must repeat actual
operation:
void increment_counter(int *counter) {

do {
int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (!success);
}

void increment_counter(int *counter) {
do {

int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (!success);
}

This part must be inside do/while

Deadlock

Continued

2/20/2006CS 3204 Spring 2006 6

Canonical Example (2)
class account {
pthread_mutex_t lock;
int amount; const char *name;

public:
account(int amount, const char *name) :

amount(amount), name(name) { pthread_mutex_init(&this->lock, NULL); }
void transferTo(account *that, int amount) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
cout << "Transfering $" << amount << " from "

<< this->name << " to " << that->name << endl;
this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);
pthread_mutex_unlock(&this->lock);

}
};

class account {
pthread_mutex_t lock;
int amount; const char *name;

public:
account(int amount, const char *name) :

amount(amount), name(name) { pthread_mutex_init(&this->lock, NULL); }
void transferTo(account *that, int amount) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
cout << "Transfering $" << amount << " from "

<< this->name << " to " << that->name << endl;
this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);
pthread_mutex_unlock(&this->lock);

}
};

account acc1(10000, "acc1");
account acc2(10000, "acc2");

// Thread 1:
for (int i = 0; i < 100000; i++)

acc2.transferTo(&acc1, 20);
// Thread 2:
for (int i = 0; i < 100000; i++)

acc1.transferTo(&acc2, 20);

account acc1(10000, "acc1");
account acc2(10000, "acc2");

// Thread 1:
for (int i = 0; i < 100000; i++)

acc2.transferTo(&acc1, 20);
// Thread 2:
for (int i = 0; i < 100000; i++)

acc1.transferTo(&acc2, 20);

Q.: How to fix?

2

2/20/2006CS 3204 Spring 2006 7

Canonical Example (2, cont’d)

• Answer: acquire locks in same order
void transferTo(account *that, int amount) {
if (this < that) {

pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);

} else {
pthread_mutex_lock(&that->lock);
pthread_mutex_lock(&this->lock);

}
/* rest of function */

}

void transferTo(account *that, int amount) {
if (this < that) {

pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);

} else {
pthread_mutex_lock(&that->lock);
pthread_mutex_lock(&this->lock);

}
/* rest of function */

}

2/20/2006CS 3204 Spring 2006 8

Reusable vs. Consumable Resources

• Distinguish two types of resources when discussing
deadlock

• A resource:
– “anything a process needs to make progress”

• (Serially) Reusable resources (static, concrete, finite)
– CPU, memory, locks
– Can be a single unit (CPU on uniprocessor, lock), or multiple

units (e.g. memory, semaphore initialized with N)
• Consumable resources (dynamic, abstract, infinite)

– Can be created & consumed: messages, signals
• Deadlock may involve reusable resources or

consumable resources

2/20/2006CS 3204 Spring 2006 9

Consumable Resources & Deadlock

• Assume client & server communicate using 2 bounded
buffers (one for each direction)
– Real-life example: flow-controlled TCP

• Q.: Under what circumstances does this code deadlock?

void client() {
for (i = 0; i < 10; i++)
send(request[i]);

for (i = 0; i < 10; i++) {
receive (reply[i]);
send(ack);

}
}

void client() {
for (i = 0; i < 10; i++)
send(request[i]);

for (i = 0; i < 10; i++) {
receive (reply[i]);
send(ack);

}
}

void server() {
while (true) {
receive(request);
process(request);
send(reply);
receive(ack);

}
}

void server() {
while (true) {
receive(request);
process(request);
send(reply);
receive(ack);

}
}

2/20/2006CS 3204 Spring 2006 10

Deadlocks, more formally

• 4 necessary conditions
1) Exclusive Access
2) Hold and Wait
3) No Preemption
4) Circular Wait

• Will look at strategies to
– Prevent
– Avoid
– Detect & break deadlocks

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Allocation Graph
R → P Assignment
P → R Request

R1

P1 P2 P3 P4

R2

R3

R4

2/20/2006CS 3204 Spring 2006 11

Deadlock Detection
• Idea: Look for circularity in resource allocation graph

– Q.: How do you find out if a directed graph has a cycle?
• Can be done eagerly

– on every resource acquisition/release, resource allocation graph
is updated & tested

• or lazily
– when all threads are blocked & deadlock is suspected, build

graph & test
• Windows provides this for its mutexes as an option
• Note: all processes in BLOCKED state is not sufficient to

conclude existence of deadlock. (Why?)
• Note: circularity test is only sufficient criteria if there’s

only a single instance of each resource – see next slide
for multi-unit resources

2/20/2006CS 3204 Spring 2006 12

Multi-Unit Resources

• Note: Cycle, but no deadlock!

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

R1

P1 P3 P4

R2

R3

R4

P2

