CS 3204
Operating Systems

Lecture 14
Godmar Back

Virgini

mTec_h

Monitors in C

e POSIX Threads & Pintos
— are Mesa-style, so must always use “while()”
— See also book Chapter 5 on discussion of Hoare vs
Mesa-style
» No compiler support, must do everything
manually
— must declare locks & condition vars

— must call lock_acquire/lock_release when
entering&leaving the monitor

— must use cond_wait/cond_signal to wait for/signal
condition

« Upside: more flexibility

V“Emmla.r wch CS 3204 Spring 2006 2/17/2006 3

Per Brinch Hansen'’s Criticism

» See Java’s Insecure Parallelism [Brinch Hansen
1999]

» Says Java abused concept of monitors because
Java does not require all accesses to shared
variables to be within monitors

» Why did designers of Java not follow his lead?

— Performance: compiler can’t easily decide if object is
local or not - conservatively, would have to make all
public methods synchronized — pay at least cost of
atomic instruction on entering every time

v“gmm‘a.r och CS 3204 Spring 2006 2/17/2006 5

Announcements

* Project 1 is due Feb 27, 11:59pm
— Should have finished alarm clock by now
— Basic priority by this weekend
« priority-change, -preempt, -fifo, -sema, -condvar
— Priority donation & advanced scheduler will likely take
more time than alarm clock & priority scheduling

* Use forum & office hours

» Check website for reading assignments:
Stallings Chapter 6 & some of 9

v“gmm‘a.r l CS 3204 Spring 2006 2/17/2006 2

» synchronized block class buffer {
means private char buffer[];
t it private int head, tail;
— enter monitor public synchronized produce(item i) {
— execute block while (buffer_full())
— leave monitor this.wait();
+ wait()/notify() use fhui;fengm‘;ﬁl =k
condition variable T '
associated with receiver public synchronized item consume() {
— Every object in Java can while (buffer_empty())
function as a condition var this.wait();
buffer[tail++] = i;
this.notify();
}
V‘“Emﬁ.r wch CS 3204 Spring 2006 2/17/2006 4

Readers/Writer w/ Monitor

struct lock mlock; // protects rdrs & wrtrs void write_lock_acquire() {

int readers = 0, writers = 0; lock_acquire(&mlock);

struct condvar canread, canwrite; while (readers > 0 || writers > 0)
void read_lock_acquire() { cond_wait(&canwrite, &mlock);

lock_acquire(&mlock); writers++;

while (writers > 0) lock_release(&mlock);
cond_wait(&canread, &mlock);

readers++;

lock_release(&mlock); void write_lock_release() {
lock_acquire(&mlock);
void read_lock_release() { writers--;
lock_acquire(&mlock); ASSERT(writers == 0);
if (--readers == 0) cond_signal(&canread, &mlock);
cond_signal(&canwrite, &mlock); cond_signal(&canwrite, &mlock);
lock_release(&mlock); lock_release(&mlock);

} Q.: does this implementation prevent starvation? !
CS 3204 Spring 2006 2/17/2006 6

mTec_h

Optimistic Concurrency
Control

Virgini

mTec_h

Optimistic Concurrency Control

» Alternative to locks: instead of serializing
access, detect when bad interleaving occurred,
retry if so

void increment_counter(int *counter) {

do {
int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (Isuccess);

Optimistic Concurrency Control (2)

» Other names:

— lock-free synchronization

— wait-free synchronization

— non-blocking synchronization
* x86 supports this via cmpxchg instruction
« Advantages:

— Less overhead for uncontended locks (faster, and need no
storage for lock queue)

— Synchronizes with IRQ handler
— Easier to clean up when killing a thread
» Disadvantages
— Can requires lots of retries (more inefficient that even a hot lock
since no thread might make progress)
===Virginia CS 3204 Spring 2006 2/17/2006 9

mTed]

}
_v“gmﬁ.r och CS 3204 Spring 2006 2/17/2006 8
Deadlock
pirginia

mTed]

Deadlock (Definition)

« A situation in which two

or more threads or '
processes are blocked 2
and cannot proceed ‘Zii
« “blocked" either on a € onon
resource request that TR R
can't be granted, or i&'
waiting for an event that 8
won't occur .4
— Possible causes: resource- :
related or communication-) Doaleck
related
e Cannot easily back out
v“gmm‘a.r och CS 3204 Spring 2006 2/17/2006 1

Deadlock Canonical Example (1)

pthread_mutex_t A;
pthread_mutex_t B;

pthread_mutex_lock(&A);
pthread_mutex_lock(&B);

pthread_mutex_lock(&B);
pthread_mutex_lock(&A);

pthread_mutex_unlock(&A);
pthread_mutex_unlock(&B);

pthread_mutex_unlock(&B);
pthread_mutex_unlock(&A);

Thread 1 Thread 2

v“gmm‘a.r och CS 3204 Spring 2006 2/17/2006 12

Canonical Example (2)

class account {
pthread_mutex_t lock;
int amount; const char *name;
public:
account(int amount, const char *name) :

pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);

this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);
pthread_mutex_unlock(&this->lock);

account acc1(10000, "accl");
account acc2(10000, "acc2");

/I Thread 1:

for (int i = 0; i < 100000; i++)
acc2.transferTo(&accl, 20);

I/l Thread 2:

for (int i = 0; i < 100000; i++)
accl.transferTo(&acc2, 20);

amount(amount), name(name) { pthread_mutex_init(&this->Iock, NULL); ;|
void transferTo(account *that, int amount) {

cout << "Transfering $" << amount << " from "
<< this->name << " to " << that->name << endl;

Q.: How to fix?

i

CS 3204 Spring 2006 2/17/2006 13
Tech P

