CS 3204
Operating Systems

Lecture 13
Godmar Back

Virgini

mTec_h

Rendezvous (revisited)

semaphore A_madeit(0); semaphore B_madeit(0);

A_rendezvous_with_B() B_rendezvous_with_A()

{ {
sema_up(A_madeit);

sema_down(A_madeit);
sema_down(B_madeit);

sema_up(B_madeit);

e Q.: does order of B’'s sema_up/sema_down matter?
— Not for correctness. Correctness is paramount.

» Performance? Consider possibility of context switches:
— sema_down if S == 0 will block

— sema_down if S > 0 or sema_up with no thread waiting will not
switch gratuitously

— sema_up with thread waiting might or might not switch

V“Emmla.r wch CS 3204 Spring 2006 2/15/2006

Infinite Buffer Problem (revisited)

producer(item) consumer()
{ {
lock_acquire(buffer); lock_acquire(buffer);
buffer[head++] = item; while (buffer is empty) {
if (#consumers > 0) consumers.add(current);
for ¢ in consumers { lock_release(buffer);
thread_unblock(c); thread_block(current);
lock_acquire(buffer);
lock_release(buffer);
} item = buffer[tail++];
lock_release(buffer);
return item

« Make sure “consumer” queue is protected, too

v“gmm‘a.r och CS 3204 Spring 2006 2/15/2006

Announcements

* Project 1 is due Feb 27, 11:59pm
— Should have finished alarm clock by now
— Basic priority no later than Friday (Feb 17)
« priority-change, -preempt, -fifo, -sema, -condvar
— Priority donation & advanced scheduler will

likely take more time than alarm clock &
priority scheduling

» My office hours today 3-4pm

v“gmm‘a.r l CS 3204 Spring 2006 2/15/2006 2

Infinite Buffer Problem (revisited)

producer(item) consumer()
{
lock_acquire(buffer);
bufferlhead++] = item;
lock_release(buffer);

lock_acquire(buffer);
while (buffer is empty) {
consumers.add(current);

if (#consumers > 0) lock_release(buffer);
for c in consumers { thread_block(current);
thread_unblock(c); lock_acquire(buffer);
}
} item = buffer[tail++];
lock_release(buffer);
return item

}

« What if consumers.add is done before lock is released?

V“Emmla.r wch CS 3204 Spring 2006 2/15/2006 4

Infinite Buffer Problem (revisited)

* This is a correct solution; in fact, we've just
reinvented “monitors” — topic of this
lecture.

* Q1: What if we hadn’t had direct access to
thread_block/thread_unblock?

* Q2: Even if we have, should we use them?
vuglnmla.red] CS 3204 Spring 2006 2/15/2006 6




Infinite Buffers w/o thread_block

producer(item) consumer()

{

lock_acquire(buffer);

while (buffer is empty) {
lock_release(buffer);
thread_yield();
lock_acquire(buffer);

lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

item = buffer[tail++];
lock_release(buffer);
return item

}

 Very inefficient solution (repeated polling)

v“gmm‘a.r och CS 3204 Spring 2006 2/15/2006 7

High vs Low Level Synchronization

« As we've seen, bounded buffer can be solved with
higher-level synchronization primitives
— semaphores (and monitors, as we’'ll see shortly)

* InPintos kernel, one could also use
thread_block/unblock directly
— this is not always efficiently possible in other concurrent

environments

« Q.: when should you use low-level synchronization (a la
thread_block/thread_unblock) and when should you
prefer higher-level synchronization?

* A.. Except for the simplest scenarios, higher-level
synchronization abstractions are always preferable
— They're well understood; make it possible to reason about code.

v“gmm‘a.r l CS 3204 Spring 2006 2/15/2006 8

Monitors

» A monitor combines a set of shared variables &
operations to access them
— Think of an enhanced C++ class with no public fields
» A monitor provides implicit synchronization (only
one thread can access private variables
simultaneously)
— Single lock is used to ensure all code associated with
monitor is within critical section
* A monitor provides a general signaling facility
— Wait/Signal pattern (similar to, but different from

semaphores)
— May declare & maintain multiple signaling queues
vugln'la CS 3204 Spring 2006 2/15/2006 9

mTﬁ;h

Monitors (cont’d)

* Classic monitors are embedded in programming
language
— Invented by Hoare & Brinch-Hansen 1972/73
- Eg%used in Mesa/Cedar System @ Xerox PARC

— Limited version available in Java/C#

* (Classic) Monitors are safer than semaphores
— can't forget to lock data — compiler checks this

* In contemporary C, monitors are a )
synchronization pattern that is achieved using
locks & condition variables
— Must understand monitor abstraction to use it

_V‘uginia

CS 3204 Spring 2006 2/15/2006 10

mTﬁ;h

Infinite Buffer w/ Monitor

monitor buffer { buffer::produce(item i)
/* implied: struct lock mlock;*/| [{ /*try { lock_acquire(&mlock); */

private: bufferlhead++] = i;
char buffer[]; /* } finally {lock_release(&mlock);} */
int head, tail;
public:
produce(item); buffer::consume()
item consume(); { I*try { lock_acquire(&mlock); */
} return bufferftail++];
/*} finally {lock_release(&mlock);} */
}
» Monitors provide implicit protection for their internal

variables
— Still need to add the signaling part

v“gmm‘a.r och CS 3204 Spring 2006 2/15/2006 1

Condition Variables

» Variables used by a monitor for signaling a
condition
— a general (programmer-defined) condition, not just
integer increment as with semaphores
» Monitor can have more than one condition
variable
* Three operations:
— Wait(): leave monitor, wait for condition to be
signaled, reenter monitor
— Signal(): signal one thread waiting on condition
— Broadcast(): signal all threads waiting on condition

v“gmm‘a.r och CS 3204 Spring 2006 2/15/2006 12




Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avail;

buffer::produce(item i)

while ((tail+1—head)%CAPACITY==0)

private: slots_avail.wait();
char bufferf]; bufferlhead++] = i;
int head, tail; items_avail.signal();
public:
produce(item); buffer::consume()
item consume(); {
} while (head == tail)
items_avail.wait();
item i = bufferftail++];
slots_avail.signal();
return i;
}
_v“@ﬂm‘a.r och CS 3204 Spring 2006 2/15/2006 13

Implementing Condition Variables

 State is just a queue of waiters:
— Wait(): adds current thread to (end of queue) & block
— Signal(): pick one thread from queue & unblock it
« Hoare-style Monitors: gives lock directly to waiter

» Mesa-style monitors (C, Pintos, Java): signaler keeps lock —
waiter gets READY, but can't enter until signaler gives up
lock

— Broadcast(): unblock all threads
« Compare to semaphores:

— Condition variable signals are lost if nobody’s on the
queue (semaphore’s V() are remembered)

— Condition variable wait() always blocks (semaphore’s
P() may or may not block)

V“Emmla.r wch CS 3204 Spring 2006 2/15/2006 15

Summary

» Semaphores & Monitors are both higher-
level constructs

» Monitors in C is just a programming
pattern that involves mutex+condition
variables

* When should you use which?

v“gmm‘a.r och CS 3204 Spring 2006 2/15/2006 17

Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avalil;

buffer::produce(item i)

while ((tail+1-head)%CAPACITY==0)

private: slots_avail.wait();
char bufferf]; bufferlhead++] = i;
int head, tail; items_avail.signal();
public:
produce(item); buffer::consume()

item consume(); {
} while (head == tail)
items_avail.wait();
Q1.: How is lost update problem item i = buffi
avoided? slots_avail.{ lock_release(&mlock);
Q2.: Why while() and not i{0? returni; | block_on(items_avail);
lock_acquire(&mlock);
Vugu'mliaT ch CS 3204 Spring 2006 2/15/2006 14

Monitors in C

¢ POSIX Threads & Pintos
« No compiler support, must do it manually
— must declare locks & condition vars

— must call lock_acquire/lock_release when entering&leaving the
monitor

— must use cond_wait/cond_signal to wait for/signal condition
« Note: cond_wait(&c, &m) takes monitor lock as
parameter

— Necessary so monitor can be left & reentered without losing
signals

« Pintos cond_signal() takes lock as well

— only as debugging help/assertion to check lock is held when
signaling

— pthread_cond_signal() does not

V“Emmla.r wch CS 3204 Spring 2006 2/15/2006 16




