
1

CS 3204
Operating Systems

Godmar Back

Lecture 11

2/10/2006CS 3204 Spring 2006 2

Announcements

• Project 1 is due Feb 27, 11:59pm
– Should have finished alarm clock probably by

next Wednesday
• Monday Office Hours 3-4pm

2/10/2006CS 3204 Spring 2006 3

Recap: Synchronization
• Disabling IRQs – use to protect against

concurrent access by IRQ handler
• Locks – use to protect against concurrent

access by other threads
– Locking strategies

• Implementation of locks on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

• Today: more examples, multiprocessor locks,
semaphores

2/10/2006CS 3204 Spring 2006 4

Locks in Java/C#

• Every object can function as lock – no need to declare &
initialize them!

• synchronized (locked in C#) brackets code in
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

is
transformed

to

2/10/2006CS 3204 Spring 2006 5

Subtle Race Condition

• Race condition even though individual accesses to “sb” are
synchronized (protected by a lock)
– But “len” may no longer be equal to “sb.length” in call to getChars()

• This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make

• Found by Flanagan/Freund

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

Not holding lock on ‘sb’ – other
Thread may change its length

2/10/2006CS 3204 Spring 2006 6

Multiprocessor Locks

• Can’t stop threads running on other processors
– too expensive (interprocessor irq)
– also would violate protection (locking = unprivileged

op, stopping = privileged op)
• Instead: use atomic instructions provided by

hardware
– All variations of “read-and-modify” theme
– test-and-set, atomic-swap, compare-and-exchange,

fetch-and-add
• Locks are built on top of these

2

2/10/2006CS 3204 Spring 2006 7

Atomic Swap

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

2/10/2006CS 3204 Spring 2006 8

Spinlocks
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?

2/10/2006CS 3204 Spring 2006 9

Spinning vs Blocking

• Blocking has a cost
– Shouldn’t block if lock becomes available in

less time than it takes to block
• Strategy: spin for time it would take to

block
– Even in worst case, total cost for lock_acquire

is less than 2*block time

2/10/2006CS 3204 Spring 2006 10

Spinlocks & Disabling Preemption
• Consider:

– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

• Thus in practice, usually combine spinlocks with
disabling preemption
– E.g., spin_lock_irqsave() in Linux

• UP kernel: reduces to disable_preemption
• SMP kernel: disable_preemption + spinlock

• Spinlocks are used when holding resources for small
periods of time (same rule as for when it’s ok to disable
irqs)

2/10/2006CS 3204 Spring 2006 11

Spinlocks (Faster)
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Only try “expensive” atomic_swap
instruction if you’ve seen lock unlocked

2/10/2006CS 3204 Spring 2006 12

Locks: Practical Issues
• How expensive are locks?
• Two considerations:

– Cost to acquire uncontended lock
• UP Kernel: disable/enable irq + memory access
• In other scenarios: needs atomic instruction (relatively expensive in

terms of processor cycles, especially if executed often)
– Cost to acquire contended lock

• Spinlock: blocks current CPU entirely (if no blocking is employed)
• Regular lock: cost at least two context switches, plus associated

management overhead

• Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily

3

2/10/2006CS 3204 Spring 2006 13

Locks: Ownership & Recursion
• Locks typically (not always) have notion of

ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

• What if lock holder tries to acquire locks it
already holds?
– Nonrecursive locks: deadlock!
– Recursive locks:

• inc counter
• dec counter on lock_release
• release when zero

