CS 3204
Operating Systems

Lecture 10
Godmar Back

Virgini

mTec_h

Recap: Disabling Interrupts

« (this applies to all variations)

» Works for Critical Section, but sledgehammer solution
— Infinite loop inside CS means machine locks up
— If you have to block (give up CPU) mutual exclusion with other
threads is not guaranteed
< Any function that transitively calls thread_block() may block
» Use this to protect data structures from concurrent
access by interrupt handlers
— Keep sections of code where irgs are disabled minimal (nothing
else can happen until irgs are reenabled — latency penalty!)
* Want something more fine-grained

— Key insight: don’t exclude everybody else, only those contending
for the same critical section

V“Emmla.r wch CS 3204 Spring 2006 2/8/2006 3

Locks

¢ Thread that enters CS locks it
— Others can’t get in and have to wait
¢ Thread unlocks CS when
leaving it
— Lets in next thread
— which one? lock
* FIFO guarantees bounded waiting
« Highest priority in Proj1
* Lock is an abstract data type
— Provides (at least) init, acquire,

release unlock

v“@ﬂm‘a.r och CS 3204 Spring 2006 2/812006 5

Announcements

* Project 1 is due Feb 27, 11:59pm
—I'm not getting enough questions

 Project 1 Repeat Help Session
— Wednesday (tonight) MCB 126, 7pm

* *nix Crash Course offered: Feb 9, 8:30pm
—tomorrow

» Reading: Section 5.1 through 5.4

v“@ﬂm‘a.r och CS 3204 Spring 2006 2/8/2006

Critical Section Problem

« A solution for the CS Problem must
1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)
if more than one threads attempt to enter, one will succeed

ability to enter should not depend on activity of other threads not
currently in CS

3) Bounded Waiting: (no starvation)

A thread attempting to enter critical section eventually will
(assuming no thread spends unbounded amount of time inside
CS)

¢ A solution for CS problem should be
— Fair (make sure waiting times are balanced)
— Efficient (not waste resources)
— Simple
_V“Emﬁ.r beh CS 3204 Spring 2006 2/8/2006 4

Implementing Locks

* Let’s discuss how to implement locks to
solve CS problem

« Later talk about semaphores

« Different solutions exist to implement locks
for uniprocessor and multiprocessors

 Will talk about how to implement locks for
uniprocessors first — next slides all
assume uniprocessor

v“@ﬂm‘a.r och CS 3204 Spring 2006 2/8/2006 6

Implementing Locks, Take 1

lock_acquire(struct lock *I) lock_release(struct lock *I)
{
while (I->state == LOCKED) |->state = UNLOCKED;
continue; }
|->state = LOCKED;

}

* Does this work?

No — does not guarantee mutual exclusion property — more than one
thread may see “state” in UNLOCKED state and break out of while
loop. This implementation has itself a race condition.

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 7

Implementing Locks, Take 3

lock_acquire(struct lock *I) lock_release(struct lock *I)
while (true) { |->state = UNLOCKED;
disable_preemption(); }
if (I->state == UNLOCKED) {
|->state = LOCKED;
enable_preemption();

return; Yes, this works — but is grossly
inefficient. A thread that
enable_preemption(); encounters

the lock in the LOCKED state
will busy wait until it is
unlocked,

needlessly using up CPU time.

}

* Does this work?

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 9

Using Locks

* Associate each shared variable with lock L

— “lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(...) void mem_free(block *b)

block *b; lock_acquire(&listlock);
lock_acquire(&listlock); list_remove(&b->elem);

b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&listlock);
lock_release(&listlock); }

return b->data;

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 1

Implementing Locks, Take 2

lock_acquire(struct lock *I) lock_release(struct lock *I)
disable_preemption();
while (I->state == LOCKED) }
continue;
|->state = LOCKED;
enable_preemption();

|->state = UNLOCKED;

)
» Does this work?

No — does not guarantee progress property. If one thread enters the
while loop, no other thread will ever be scheduled since preemption
is disabled — in particular, no thread that would call lock_release will
ever be scheduled.

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 8

Implementing Locks, Take 4

lock_acquire(struct lock *I)

lock_release(struct lock *I)

disable_preemption();
while (I->state == LOCKED) { |->state = UNLOCKED;
list_push_back(l->waiters, if (list_size(l->waiters) > 0)
¤t->elem); thread_unblock(
thread_block(current); list_entry(list_pop_front(l->waiters),
struct thread, elem));
enable_preemption();

disable_preemption();

|->state = LOCKED;
enable_preemption();

Correct & uses proper blocking.
Note that thread doing the unlock performs the work of unblocking
the first waiting thread.

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 10

How many locks should | use?

» Could use one lock for all shared variables
— Disadvantage: if a thread holding the lock blocks, no
other thread can access any shared variable, even
unrelated ones
— Sometimes used when retrofitting non-threaded code
into threaded framework
— Examples:
« “BKL" Big Kernel Lock in Linux
« fslock in Pintos Project 2
« |deally, want fine-grained locking

— One lock only protects one (or a small set of)
variables — how to pick that set?

V“Emmla.red] CS 3204 Spring 2006 2/8/2006 12

Multiple locks, the wrong way

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(...) void mem_free(block *b)

block *b; lock_acquire(&freelock);
lock_acquire(&alloclock); list_remove(&b->elem);
b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&freelock);
lock_release(&alloclock); }

} i D=kl Wrong: locks protect data structures, not

code blocks! Allocating thread & deallocating
thread could collide

CS 3204 Spring 2006 2/8/2006 13

e Tech

Multiple locks, correct (1)

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)

block *b; lock_acquire(&usedlock);
lock_acquire(&usedlock); lock_acquire(&freelock);
lock_acquire(&freelock); list_remove(&b->elem);

b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&freelock);
lock_rel freelock); lock_rel &usedlock);

lock_release(&usedlock);

Correct, but inefficient!
return b->data;

Locks are always held simultaneously,
} one lock would suffice

CS 3204 Spring 2006 2/8/2006 15

oy Tech

Conclusion

» Choosing which lock should protect which
shared variable(s) is not easy — must weigh:

— Whether all variables are always accessed together
(use one lock if so)

— Whether code inside critical section can block (if not,
no throughput gain on uniprocessor)

— Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

— Cost of multiple calls to lock/unlock (gains may be
offset by those costs)

Vllgll'kmlél,rm__h

CS 3204 Spring 2006 2/8/2006 17

Multiple locks, 2" try

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)

{ {
block *b; lock_acquire(&usedlock);
lock_acquire(&freelock); list_remove(&b->elem);
b = alloc_block_from_freelist(); lock_acquire(&freelock);

lock_acquire(&usedlock); coalesce_into_freelist(&freelist, b);

insert_into_usedlist(&usedlist, b); lock_release(&usedlock);

lock_release(&freelock); lock_release(&freelock);

lock_release(&usedlock); [ajso wrong: deadlock!

return b->data; Always acquire multiple locks in same order -
3 Or don't hold them simultaneously

e Tech

CS 3204 Spring 2006 2/8/2006 14

Multiple locks, correct (2)

static struct If Correct, but not necessarily better!

static struct I On uniprocessor:

No throughput from fine-grained locking, since no

static struct i{ piocking inside critical sections — but pay twice the price
static struct Id compared to one-lock solution

On multiprocessor:

Gain from being able to manipulate free & used

block *b: lists in parallel, but increased risk of contended locks

void *mem_alloc(...)

lock_acquire(&freelock);
b = alloc_block_from_freelist(); lock_acquire(&usedlock);
lock_release(&freelock); list_remove(&b->elem);
lock_acquire(&usedlock); lock_release(&usedlock);
insert_into_usedlist(&usedlist, b); lock_acquire(&freelock);
lock_release(&usedlock); coalesce_into_freelist(&freelist, b);
return b->data; lock_release(&freelock);

}
oy Tech

CS 3204 Spring 2006 2/8/2006 16

Rules for easy locking

« Every shared variable must be protected by a
lock

— Acquire lock before touching (reading or writing)
variable

— Release when done, on all paths
— One lock may protect more than one variable, but not
too many
+ If manipulating multiple variables, acquire locks
protecting each

— Acquire locks always in same order (doesn’t matter
which order, but must be same)

— Release in opposite order
— Don’t mix acquires & release (two-phase locking)
Ve Tech

CS 3204 Spring 2006 2/8/2006 18

