CS 3204
Operating Systems

Project 4 Help Session
Godmar Back

Virgini

mTec_h

Project 4

* Final Task: Build a simple file system!
— “Easier than Project 3"
— But: more lines of code for complete solution
» Subtasks:
— Extensible Files
— Subdirectories
— Buffer Cache
» Open-ended design problem

Synchronization

v“@ﬂm‘a.r och CS 3204 Spring 2006 5/3/2006 2

How Pintos’s Filesystem Is Used

pintos script
writes/reads
files

scratch
disk

bootloader
kernel
0,0)

filesystem

disk
(0.1)
A2

t 1 swz\i/p’\:)ling

is loaded
from
| your kernel
11
| pintos applications |
“EmmlaT wch CS 3204 Spring 2006 5/3/2006 3

Filesystem Project Overview

* Your kernel must

— Be able to format the disk when asked (write structures for an initial,
empty filesystem on it)

— Be able to copy files onto it when called from fsutil_put() (which
happens before process_execute is called for the first time) — and copy
files off of it

— Be able to support required system calls

— Be able to write data back to persistent storage

« Only your kernel writes to your disk, you don't have to follow any
prescribed layout

— Can pick any layout strategy that doesn't suffer from external
fragmentation and can grow files (simplest strategy is a Unix-style
direct, single indirect, double indirect inode layout

— Can pick any on-disk inode layout (you have to pick one, the existing
one does not work)

— Can pick any directory layout (although existing directory layout
suffices)

_vug] nia

CS 3204 Spring 2006 5/3/2006 4

mTﬁ;h

Base Filesystem Layout

Freemap
File Inode
szg':;i 11100101 | [Root Directory (16 entries a 20bytes < 1 sector)
inode #6 | inode # inode # inode #
multi-oom |name[15] |name[15] |name[15]
Root inuse=1 inuse=0 inuse=0 inuse=0
Directory l
Inode
Start=6 File
Start=8 < >
Length=5
A /

lo[1]2]3[4]s]e]7[8]o] [.[.[.].[.[.1.[.].]
Disk Sectors
_V‘“Bmﬁ.r och CS 3204 Spring 2006 5/3/2006 5

Recommended Order

1. Buffer Cache — implement &
pass all regression tests

2. Extensible Files — implement &
pass file growth tests

3. Subdirectories
4. Miscellaneous: cache

Synchronization

-

1 (at some point)
 drop global fslock

readahead, reader/writer —
fairness, deletion etc. |
You should think about synchronization
throughout
V‘“Bmﬁ.r »ch CS 3204 Spring 2006 5/3/2006 6

The Big Picture

files
Per-process (including
file descriptor | pata structures to keep =N directories)
table track of open files inodes,
w index blocks
5 struct file EY \ —
inode + position + ...]
4 o)
Q
g struct dir % I [y
1 inode + ... \ /
2]
9 struct inode -------t1- P
i Root Dir Inode
PCB Openfile table cached data and Free Map
metadata in buffer On-Disk
. cache Data Structures
Virginia CS 3204 Spring 2006 5/3/2006 7

mTec_h

Buffer Cache (1): Overview

system calls, fs utils

» Should cache accessed

| | : :
fle) dir %0 disk blocks in memory
[« Should be only interface to
inode_*() disk: all disk accesses
l should go through it
cache_*()
|
disk_*()
===Virginia CS 3204 Spring 2006 5/3/2006 8

mTec_h

Buffer Cache (2): Design

mTﬁ;h

Cache Block Descriptor \\L‘ desc H 512 bytes ‘

- disk_sector_id, if in use

~ dirty bit [desc M 512 bytes |

. ;a(l)lfdr:; ders \ desc H 512 bytes \

- # of writers [desc 512 bytes |

- # of pending read/write requests B >64

- lock to protect above variables g

- signaling variables to signal :

availability changes [desc M 512 bytes |

- usage information for eviction

policy desc] 512 bytes

- data (pointer or embedded) J ‘ desc H 512 bytes ‘
Virginia CS 3204 Spring 2006 5/3/2006 9

Buffer Cache (3): Interface

/I cache.h

struct cache_block; [/l opaque type

I reserve a block in buffer cache dedicated to hold this sector
/I possibly evicting some other unused buffer

/I either grant exclusive or shared access

struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
Il release access to cache block

void cache_put_block(struct cache_block *b);

/I read cache block from disk, returns pointer to data

void *cache_read_block(struct cache_block *b);

/1 fill cache block with zeros, returns pointer to data

void *cache_zero_block(struct cache_block *b);

/I mark cache block dirty (must be written back)

void cache_mark_block_dirty(struct cache_block *b);

Il not shown: initialization, readahead, shutdown

_vug] nia

CS 3204 Spring 2006 5/3/2006 10

mTﬁ;h

Buffer Cache (4): Notes

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

Buffer Cache (5):
Prefetching

Virgini

* Interface is just a suggestion

« Definition as static array of 64 blocks ok

¢ Can use Pintos list_elem to implement eviction policy

» Use structure hiding (don’t export cache_block struct
outside cache.c)

« Must have explicit per-block locking (can’t use Pintos’s
lock since they do not allow for multiple readers)

 (Final version should) provide solution to multiple reader,
single writer synchronization problem that starves neither
readers nor writers:
— Use condition variables!

« Eviction: use LRU (or better)

CS 3204 Spring 2006 5/3/2006 11

mTec_h

Virgini

* Would like to bring next queue g;
block to be accessed into e el
cache before it's accessed e uesi(®):
* Must be done in parallel geond.signal(;
g.unlock();

— use daemon thread and
producer/consumer pattern

* Note: next(n) not always
equal to n+1

« Don'tinitiate read_ahead if
next(n) is unknown or would
require another disk access
to find out

CS 3204 Spring 2006

mTec_h

cache_readahead_daemon() {
while (true) {
qg.lock();
while (q.empty())
qcond.wait();
s = g.pop();
g.unlock();
read sector(s);

5/3/2006 12

Multi-Level Indices

* Need only single&double
indirect blocks

Direct
Blocks

Indirect
Block

Double —

Indirect

Block
Triple
Indirect
Block

Virgini

CS 3204 Spring 2006 5/3/2006 13

Multi-Level Indices

* How many levels do we need?

» Max Disk size: 8MB = 16,384 Sectors

* Assume sector number takes 2 or 4 bytes,
can store 256/128 in one sector

* Filesize(using only direct blocks) < 256

* Filesize(direct + single indirect block) <
2*256

* File (direct + single indirect + double
indirect) < 2*256 + 2562

f=——=V/irginia

CS 3204 Spring 2006 5/3/2006 14

mTec_h

mTec_h

Files vs. Inode vs. Directories

« Offset management in struct file etc. should not
need any changes
— Assuming single user of each struct file, so no
concurrency issues
* You have to completely redesign struct
inode_disk to fit your layout
* You will have to change struct inode & struct dir

— struct inode can no longer embed struct inode_disk
(inode_disk should be stored in buffer cache)

_vug] nia

CS 3204 Spring 2006 5/3/2006 15

mTﬁ;h

Extending a file

« Seek past end of file & write extends a file
¢ Space in between is filled with zeros
— Can extend sparsely (use “nothing here” marker in
index blocks)
« Consistency guarantee on extension:
— If A extends & B reads, B may read all, some, or none
of what A wrote
« But never something else!
— Implication: do not update & unlock metadata
structures (e.g., inode length) until data is in buffer
cache

Virgini

mTec_h

CS 3204 Spring 2006 5/3/2006 17

struct inode vs struct inode_disk

struct in| redesign for indexed approach |

data sector. */
R File size in bytes. */
unsigned magics * Magic number. */

used. */

/* In-memory inode. */
struct inode

struct list_elem elem; /* Element in inode list. */
disk_sector_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */

bool removed-= e e if deleted, false otherwise. */

int deny_wr| store in buffer cache writes ok, >0: deny writes. */

}:
_vug] nia

CS 3204 Spring 2006 5/3/2006 16

mTﬁ;h

Subdirectories

» Support nested directories (work as usual)

* Requires:
— Keeping track of type of file in on-disk inode

* Should not require changes to how individual
directories are implemented (e.g., as a linear list
— should be able to reuse existing code)
— Specifically, path components remain <= 14 in length
— Once file growth works, directory growth should work

“automatically”

* Implement system calls: mkdir, rmdir

— Need a way to test whether directory is empty

Virgini

mTec_h

CS 3204 Spring 2006 5/3/2006 18

Subdirectories: Lookup

» Implement absolute & relative paths
Use strtok_r to split path

— Recall that strtok_r() destroys its argument - make
sure you create copy if necessary

— Make sure you operate on copied-in string
« Walk hierarchy, starting from root directory (for
absolute paths); current directory (for relative

paths)

 All components except last must exist & be
directories
vugnmlaTEd] CS 3204 Spring 2006 5/3/2006 19

Synchronization — General Hints

« Always consider: what lock (or other protection
mechanism) protects which field:
— Iflock L protects data D, then all accesses to D must be within

lock_acquire(&L); Update D ...; lock_release(&L);

» Should be fine-grained: independent operations should
proceed in parallel
— Example: don't lock entire path when looking up file
— Files should support multiple readers & writers

— Removing a file in directory A should not wait for removing file in
directory B

« May use embedded locks directly (struct inode, struct dir,
free map)
— Or be built upon locks (struct cache_block)

 For full credit, must have dropped global fs lock
— Can't see whether any of this works until you have done so

V“Emmla.r wch CS 3204 Spring 2006 5/3/2006 21

Current Directory

* Need to keep track of current directory (in
struct thread)
— Warning: before first task starts, get/put must
work but process_execute hasn't been called
 Current directory needs to be kept open

— Requires a table (e.g., list) of open directories
& reference counting for directories

— Can be implemented for struct dir analogous
to struct inode using a list

V“Emm‘a.r l CS 3204 Spring 2006 5/3/2006 20

Free Map Management

» Can leave almost unchanged
» Read from disk on startup, flush on shutdown

* Instead of allocating n sectors at file creation
time, now allocate 1 sector at a time when file is

growing
— Do clustering for extra credit
« If file_create(“...”, m) is called with m > 0,

simulate write_at(offset=m, 1byte of data); to
expand to appropriate length

» Don't forget to protect free_map() with lock

V“Emmla.r wch CS 3204 Spring 2006 5/3/2006 22

Grading Hints

e Tests are rather incomplete

« Possible to pass all tests without having
synchronization (if you keep global fslock),
persistence, deletion, or buffer cache
implemented
— TAs will grade those aspects by inspection/reading

your design document

» Core parts (majority of credit) of assignment are
— Buffer cache
— Indexed & extensible files
— Subdirectories

V“Emm‘a.r och CS 3204 Spring 2006 5/3/2006 23

