
1

Project 2: User Programs

Abdelmounaam Rezgui

Acknowledgment: The content of some slides is partly taken
from Josh Wiseman’s presentation

2

Overview

Objective: Enable user programs to run
and interact with the OS via system
calls

Directories:
userprog/
threads/
examples/

3

Using the File System -1-

NOT the focus of this project
User programs are loaded from the FS
Many system calls deal with the FS (e.g.,
open(), read(), write())
Simple file system provided in the filesys
directory

Look at: filesys.h and file.h
Limit is 16 files
No subdirectories

4

Using the File System -2-
Create a (simulated) disk:

pintos-mkdisk <img-file> <size>
img-file = filename for disk (usually “fs.dsk”)
size = disk capacity, MB

Format disk
pintos -f -q

-f = format, -q = quit after boot
Copy to disk:

Pintos -p <source> -a <dest> -- -q
-p = source file, -a = filename on disk

Run program:
Pintos run <executable>

$ make check: will build a disk for you

5

Sample user programs

In examples/
cat, echo, halt, hex-dump, ls, shell

You should be able to write and run
your own programs
Create a test disk
Copy programs to the test disk

6

Requirements

1) Argument passing
2) System calls
3) Process termination
4) Deny writes to executables
5) DESIGNDOC

2

7

Getting Started

In the default version, programs will
crash

To get simple programs to run:
*esp = PHYS_BASE – 12;

This will NOT make argument passing
work

8

Argument Passing -1-
pgm.c
main(int argc,

char *argv[]) {
…

}
$ pintos run ‘pgm alpha beta’

argc = 3
argv[0] = “pgm”
argv[1] = “alpha”
argv[2] = “beta”

Motivation:
kernel creates first
process
one process creates
another

$ pintos run ‘pgm alpha beta’
You may:

use strtok_r() to parse the
command line
assume cmd line length <
4KB

9

Argument Passing -2-

User stack

Uninitialized data segment
(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows
downward

Grows
upward

4GB
Kernel
Virtual

Memory

User
Virtual

Memory

0x 08048000

Invalid Pointer Area
(for User Programs)

10

Argument Passing -3-

User stack

Uninitialized data segment
(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows
downward

Grows
upward

4GB

0x 08048000

Address Name Data Type

‘beta\0’

‘alpha\0'

Word-align

‘pgm\0’

@ ”beta”

@ ”alpha”

@ ”pgm”

argv =
@ @ “pgm”

3

Return
address

0xbffffffb

PHYS_BASE = 0xc0000000

0xbffffff5

0xbffffff1

0xbffffff0

0xbfffffec

0xbfffffe8

0xbfffffe4

0xbffffe0

0xbfffffdc

0xbfffffd8

char[5]

char[6]

char[4]

uint8_t

0

*argv[2]

*argv[1]

*argv[0]

argv[3]

0

0xbfffffd4

0xbffffffb

0xbffffff 5

0xbffffff 1

0xbffffe0

argc

0

char *

char *

char *

char *

char **

int

void(*)()

11

Argument Passing -4-

12

Argument Passing -5-

bffffff0

bfffffe0

bfffffd0

 . p g m . a l p h a . b e t a . 00 70 67 6d 00 61 6c 70 68 61 00 62 65 74 61 00

f1 ff ff bf f5 ff ff bf fb ff ff bf 00 00 00 00

00 00 00 00 03 00 00 00 e0 ff ff bf

.

.

3

13

System Calls -1-

User programs make system calls
E.g., open(), close(), exit(), halt(), …

Implement system calls:
Process control:

exit(), exec(), and wait()
Filesystem calls:

create(),open(),close(),read(),write(),seek(),
tell(),filesize(),remove()

halt()

14

System Calls -2-
The OS deals with software exceptions (called
“internal interrupts” in the x86)
SEs are events that occur in program code.
They may be:

Errors: e.g., page faults, division by 0
System Calls

SEs don’t execute in interrupt context
i.e., intr_context() == false

In the 80x86 arch, the ‘int’ instruction is used
to make system calls
In Pintos, user programs invoke ‘int $0x30’ to
make system calls

15

System Calls -3-
A system call has:

System call number
(possibly) arguments

System call numbers are in: lib/syscall-nr.h
When syscall_handler() gets control:

System calls that return
a value () must modify
f->eax

Sys. Call #

Arg #2

Arg #1

.

.

.

Caller’s User Stack

syscall_handler (struct intr_frame *f) {

f->esp
….

f->eax = … ;
}

16

System Calls -4-
Filesystem calls

You must decide how to implement file descriptors
O(n) data structures for file descriptors are OK

For this project, access granularity is the entire file
syst. Use ONE lock for the entire file system

write(1, …) writes to the console. Use putbuf().

read(0, …) reads from the stdin (keyboard). Use
kbd_getc().

17

System Calls -5-

exec(const char
*cmd_line)

Runs ‘cmd_line’,
passes args, returns
pid

exit() retains error
codes for wait()

main() {

pid_t p;

p = exec(“cp file1 file2”);

…

}

18

System Calls -6-

wait(pid_t pid)
Waits for process pid to die and returns the
status that pid returned to exit()
Returns -1 if

pid was killed by the kernel
pid is not a child
Wait has already been successfully called

4

19

System Calls -7-
Parent may or may not wait for
its child
Parent may call wait() after child
terminates!
Implement process_wait() in
process.c
Then, implement wait() in terms
of process_wait()
Conditions and semaphores will
help

Think about what semaphores may
be used for and how they must be
initialized

main() {

int status;

… status = 5;

exit(status);

}

main() {

int i; pid_t p;

p = exec(“pgm a b”);

i = wait (p);

… /* i must be 5 */

}

pgm.c 20

Process Termination
Record the argument passed to the exit()
syscall

When a user process exits:
printf(“%s: exit(%d)\n”,…)

ALL programs call exit() unless, of course,
if they're terminated

Returning from main implicitly calls exit()
_start() is { exit(main(…)); }

21

Virtual Memory Layout -1-

Stack does NOT grow
until Project 3
Heap never grows
Uninitialized means
“zero-initialized”
UVM is per-process
A user program
accesses only its UVM

User stack

Uninitialized data segment
(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows
downward

Grows
upward

4GB
Kernel
Virtual

Memory

User
Virtual

Memory

0x 08048000

Invalid Pointer Area
(for User Programs)

22

Virtual Memory Layout -2-

If it attempts to access
KVM Page fault
Kernel threads access KVM
and the UVM of the
running user process
In this project, this image
is ALREADY set up for you.
You only have to query
the page table to see
which pages are mapped

User stack

Uninitialized data segment
(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows
downward

Grows
upward

4GB
Kernel
Virtual

Memory

User
Virtual

Memory

0x 08048000

Invalid Pointer Area
(for User Programs)

23

Memory Access -1-

Kernel needs to access memory through
pointers given by a user program
user-provided pointers may be invalid

point to unmapped VM
point to KVM address space

How to handle this ?

24

Memory Access -2-

Two options:
verify the validity of a user-provided pointer,
then dereference it –

STRONGLY RECOMMENDED!
dereference and handle during page fault

Check only that user pointer points below
PHYS_BASE
Dereference it
If it causes a page fault, handle it
You need to modify the code for page_fault()

5

25

Memory Access -3-

In BOTH cases:
Graceful termination

Misbehaving processes must be killed
Orderly shutdown

No resource leaks
E.g., release locks, free allocated memory pages,
etc.

Data may span page boundaries

26

Denying Writes to Executables

You may use:
file_deny_write() to prevent writes to an open file

file_allow_write() re-enables them (if no
other process has already denied them)
If a file is closed, writes are re-enabled.

27

Misc

Read Section 4.2 (page 51) (Suggested Order
of Implementation) in Pintos documentation
Do not forget the Design Document
Good Luck !

