
1

Pintos: Threads Project

Vijay Kumar
CS 3204 TA

Introduction to Pintos

Simple OS for the 80x86 architecture
Capable of running on real hardware
We use bochs, qemu to run Pintos
Supports kernel threads, user programs and 
file system
In the projects, strengthen support for these 
+ implement support for VM

Development Environment
Use the machines in McB 124 for the projects
Alternately, log on to one of the machines in McB
124 remotely using SSH
ssh –X yourlogin@rlogin.cs.vt.edu
or
ssh –Y yourlogin@rlogin.cs.vt.edu (for trusted X11 forwarding)

Use CVS 
- for managing and merging code written by the team 

members
- keeping track of multiple versions of files

CVS Setup
Start by choosing a code keeper for your group
Keeper creates repository on ‘fortran.cslab’
Summary of commands to setup CVS

ssh fortran
cd /home/cs3204
mkdir Proj-keeper_pid
setfacl --set u::rwx,g::---,o::--- Proj-keeper_pid
# for all other group members do:
setfacl -m u:member-pid:rwx Proj-keeper_pid
setfacl -d --set u::rwx,g::---,o::--- Proj-keeper_pid
# for all group members, including the keeper, do:
setfacl -d -m u:member_pid:rwx Proj-keeper_pid
cvs -d /home/cs3204/Proj-keeper_pid init
cd /home/courses/cs3204/pintos/pintos
cvs -d /home/cs3204/Proj-keeper_pid import -m "Imported sources" pintos foobar start

Using CVS

fortran.cslab containing

Repository

import

checkout

commit

Development machine

in McB124

Other useful CVS commands

- diff

- add

- remove

- update

Getting started with Pintos
Set env variable CVS_RSH to /usr/bin/ssh
export CVS_RSH=/usr/bin/ssh

Check out a copy of the repository to directory ‘dir’
cvs -d :ext:your_pid@fortran:/home/cs3204/Proj-keeper_pid checkout -d dir pintos

Add ~cs3204/bin to path
export PATH=~cs3204/bin:$PATH

Build pintos
cd dir/src/threads
make
cd build
pintos run alarm-multiple



2

Project 1 Overview

Extend the functionality of a minimally 
functional thread system
Implement

- Alarm Clock
- Priority Scheduling
- Advanced Scheduler

Pintos Thread System
struct thread

{
tid_t tid;                     /* Thread identifier. */
enum thread_status status;          /* Thread state. */
char name[16];   /* Name (for debugging purposes). */
uint8_t *stack;                     /* Saved stack pointer. */
int priority;                       /* Priority. */
/* Shared between thread.c and synch.c. */
struct list_elem elem;              /* List element. */

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir;                  /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic;                /* Detects stack overflow. */

};

Pintos Thread System (contd…)

Read threads/thread.c and threads/synch.c to 
understand

- How the switching between threads occur
- How the scheduler works
- How the various synchronizations primitives 

work

Alarm Clock
Reimplement timer_sleep( ) in devices/timer.c
without busy waiting

/* Suspends execution for approximately TICKS timer ticks. */
void timer_sleep (int64_t ticks){
int64_t start = timer_ticks ();
ASSERT (intr_get_level () == INTR_ON);
while (timer_elapsed (start) < ticks)
thread_yield ();

}

Implementation details
- Remove thread from ready list and put it back after 

sufficient ticks have elapsed

Priority Scheduler
Ready thread with highest priority gets the processor
When a thread is added to the ready list that has a higher 
priority than the currently running thread, immediately yield 
the processor to the new thread
When threads are waiting for a lock, semaphore or a 
condition variable, the highest priority waiting thread should 
be woken up first
Implementation details

- compare priority of the thread being added to the ready list with that 
of the running thread

- select next thread to run based on priorities
- compare priorities of waiting threads when releasing locks, 

semaphores, condition variables

Priority Inversion

Priority scheduling leads to priority inversion
Consider the following example where 
prio(H) > prio(M) > prio(L)
H needs a lock currently held by L
M that was already on the ready list gets the 

processor before L
H indirectly waits for M



3

Priority Donation

When a high priority thread H waits on a lock 
held by a lower priority thread L, donate H’s 
priority to L and recall the donation once L 
releases the lock
Implement priority donation for locks
Handle the cases of multiple donations and 
nested donations

Multiple Priority Donations: 
Example

lock_acquire (&a);
lock_acquire (&b);

thread_create ("a", PRI_DEFAULT - 1, a_thread_func, &a);
msg ("Main thread should have priority %d.  Actual priority: 
%d.", PRI_DEFAULT - 1, thread_get_priority ());

thread_create ("b", PRI_DEFAULT - 2, b_thread_func, &b);
msg ("Main thread should have priority %d.  Actual priority: 
%d.", PRI_DEFAULT - 2, thread_get_priority ());

Low Priority thread

static void a_thread_func (void *lock_) 
{

struct lock *lock = lock_;
lock_acquire (lock);
msg ("Thread a acquired lock a.");
lock_release (lock);
msg ("Thread a finished.");

}

Medium Priority thread

static void b_thread_func (void *lock_) 
{

struct lock *lock = lock_;
lock_acquire (lock);
msg ("Thread b acquired lock b.");
lock_release (lock);
msg ("Thread b finished.");

}

High Priority thread

Nested Priority Donations: 
Example

lock_acquire (&a);
locks.a = &a;
locks.b = &b;

thread_create ("medium", PRI_DEFAULT - 1, m_thread_func, &locks);
thread_yield ();
msg ("Low thread should have priority %d.  Actual priority: %d.", 
PRI_DEFAULT - 1, thread_get_priority ());

thread_create ("high", PRI_DEFAULT - 2, h_thread_func, &b);
thread_yield ();
msg ("Low thread should have priority %d.  Actual priority: %d.", 
PRI_DEFAULT - 2, thread_get_priority ());

Low Priority thread
static void m_thread_func (void *locks_) 
{

struct locks *locks = locks_;
lock_acquire (locks->b);
lock_acquire (locks->a);

msg ("Medium thread should have priority %d.
Actual priority: %d.", PRI_DEFAULT - 2, 

thread_get_priority ());
…}

Medium Priority thread

static void h_thread_func (void *lock_) 
{

struct lock *lock = lock_;

lock_acquire (lock);
…}

High Priority thread

Advanced Scheduler
Implement Multi Level Feedback Queue Scheduler
Priority Donation not needed in the advanced 
scheduler
Advanced Scheduler must be chosen only if ‘–mlfqs’
kernel option is specified
Read section on 4.4 BSD Scheduler in the Pintos 
manual for detailed information
Some of the parameters are real numbers and 
calculations involving them have to be simulated 
using integers.

Suggested Order
Alarm Clock

- easier to implement compared to the other parts
- other parts not dependent on this

Priority Scheduler
- needed for implementing Priority Donation and 

Advanced Scheduler
Priority Donation | Advanced Scheduler

- these two parts are independent of each other
- can be implemented in any order but only after Priority 

Scheduler is ready

Debugging your code
printf, ASSERT, backtraces, gdb
Running pintos under gdb

- Invoke pintos with the gdb option
pintos --gdb -- run testname

- On another terminal invoke gdb
gdb kernel.o

- Issue the command
target remote localhost:1234

- All the usual gdb commands can be used: step, next, 
print, continue, break, clear etc



4

Tips
Read the relevant parts of the Pintos manual
Read the comments in the source files to understand what a 
function does and what its prerequisites are
Be careful with synchronization primitives

- disable interrupts only when absolutely needed
- use locks, semaphores and condition variables instead

Beware of the consequences of  the changes you introduce 
- might affect the code that gets executed before the boot time 

messages are displayed, causing the system to reboot or not boot at 
all

- use gdb to debug 

Tips (contd…)

Include ASSERTs to make sure that your 
code works the way you want it to
Integrate your team’s code often to avoid 
surprises
Use gdb to debug
Make changes to the test files, if needed
Test using qemu simulator and the –j option 
with bochs

Grading & Deadline

Tests – 50%
Design – 50%

- data structures, algorithms, synchronization, 
rationale and coding standards

Due February 27, 2006 by 11:59pm 


