
CS 3204 Spring 2006 Midterm Solution

1/6

CS 3204 Midterm Solution

27 students took the midterm. The table below shows who graded which problem
and how well students did on the problem. The median was a 29. The midterm
will count for approximately 15% of your final grade.

Problem 1 2 3 4 5 Total
Points 10 8 14 10 8 50
Median 8 3 12 8 4 29
Average 6.3 2.7 11.0 6.5 3.8 30.4
Std Dev 2.8 1.9 3.4 3.0 1.6 8.2
Min 1 0 3 1 1 13
Max 9 8 14 10 7 44
Grader Godmar Godmar Vijay Vijay a) Vijay

b) Godmar

CS3204 Midterm Spring 2006 (N=27 Median=29/50)

0

2

4

6

8

10

10-15 16-20 21-25 26-30 31-35 36-40 41-45

Points (out of 50)

St
ud

en
ts

Answers on the following pages are shown in this style.
[Notes regarding our grading are shown like this.]

CS 3204 Spring 2006 Midterm Solution

2/6

1 System Calls (10 pts)
Suppose you decide to add a gettimeofday system call to Pintos. To user
programs, gettimeofday() looks like an ordinary function call:

 struct timeval {
 uint32_t tv_sec; // seconds
 uint32_t tv_usec; // microseconds
 };

 int gettimeofday(struct timeval *p);

If successful, gettimeofday will write the current time to *p and return 0. Suppose
that the kernel has some way of reading the current time, such as a device driver
that can read the PC’s built-in real-time clock.

a) (2 pts) Name one change you would have you to make to Pintos’s
standard C library for user programs (located in lib/user/*.)

You would have to assign a new system call number and add it to syscall-nr.h,
and you would have to write a system call stub in lib/user/syscall.c for the new
call.

b) (4 pts) What changes, if any, would you have to make to your system call
handling framework in userprog/syscall.c (excluding the actual
implementation of gettimeofday itself)?

You would at least have to add an entry to your system call handler table at the
proper index that specifies the number of arguments to be copied (1 in this case)
and the name of the function implementing the call.

c) (4 pts) Suppose you implement gettimeofday as a function
sys_gettimeofday() in syscall.c. Suppose a real-time clock device driver
implements a function rtc_gettimeofday() that has the same signature as
gettimeofday(), i.e. int rtc_gettimeofday(struct timeval *p);
Implement sys_gettimeofday in terms of rtc_gettimeofday!

int
sys_gettimeofday(struct timeval *userp)
{
 if (verify_area(userp, sizeof(*userp)) != SUCCESS)
 process_terminate(-1);
 return rtc_gettimeofday(userp);
}

You may use the function names you used in your code without explaining
them, as long as your names are descriptive.

Note: if your verify() function takes a pointer, you would have to check the validity
of “userp” and “((char *)userp) + sizeof(*userp) – 1”, that is, the first and last byte
of the struct since it could straddle a page boundary.

CS 3204 Spring 2006 Midterm Solution

3/6

2 Protection (8 pts)
a) (4 pts) Suppose an architecture does not provide software trap

instructions such as the int instruction on the i386. Describe how you
would implement system calls on such an architecture.

Any instruction that will cause a fault can function as a system call trap. So you
could use an illegal or a privileged instruction, or you could have the user
program intentionally provoke an illegal memory access to some magic address
when it wants to call into the kernel.

b) (4 pts) Suppose an i386 ELF executable gets corrupted on disk in such a
way that all bytes inside the code segment are overwritten with the value
0x90, which is the machine code for a NOP instruction on the i386. What
would happen if a process tried to exec() this executable?

The exec() would succeed, and the process would start executing nops until it
falls off the end of its code segment. At this point, it will with high likelihood fault
in one way or another. (If there’s a hole following the code segment, it will page
fault on the instruction fetch, otherwise, it will interpret the data in the following
segments as instructions and try to execute them, which will usually quickly lead
to an illegal instruction or another fault.)
 [2 pts for saying it will run and do nothing, and 4 pts for also realizing that it will eventually fault.
No credit if you assumed that exec() would fail.]

3 Semaphores (14 pts)
a) (8 pts, 2 pts each) Suppose you have 2 semaphores and 3 concurrent

threads as in the example below. Assume that the threads run for a
sufficiently long time under the regime of a preemptive scheduler.

struct semaphore S, U;
sema_init(&S, 2);
sema_init(&U, 0);

// Thread 1
while (1) {
 sema_down(&S);
 putchar(‘A’);
 sema_up(&U);
}

// Thread 2
while (1) {
 sema_down(&U);
 putchar(‘B’);
 putchar(‘C’);
 sema_up(&U);
}

// Thread 3
while (1) {
 sema_down(&U);
 putchar(‘D’);
}

i. How many times will ‘A’ be printed?

2 times because S is initialized to 2

ii. How many times will ‘D’ be printed?

CS 3204 Spring 2006 Midterm Solution

4/6

2 times also (unless the scheduler starves Thread 3 indefinitely)

iii. What is the minimum number of times that ‘B’ might be printed?

0 times – it may never be printed if Thread 3 eats up the 2 signals on U before
Thread 2 has a chance to run (note that this does not mean Thread 2 is starved
indefinitely – just long enough for Thread 3 to eat the signals.)

iv. Can the output string start with ‘D’?

No, because Thread 1 prints an ‘A’ before it first signals the semaphore U, which
is initialized to 0 and which must have been signaled before Thread 3 can print
‘D’.

b) (6 pts) Suppose you have 1 semaphore and 3 concurrent threads as in the
example below.

struct semaphore S;
sema_init(&S, 4); // suppose S represents a resource with 4 units

void resource_user_thread(void *_) {
 while (1) {
 // get two units of S
 sema_down(&S);
 sema_down(&S);
 // (use resource)
 // return two units of S
 sema_up(&S);
 sema_up(&S);
 }
}
...
tid_t t1 = thread_create(..., resource_user_thread, NULL);
tid_t t2 = thread_create(..., resource_user_thread, NULL);
tid_t t3 = thread_create(..., resource_user_thread, NULL);

Can this program deadlock?
If so, give the sequence of events leading to deadlock.
If not, say why not. Be specific.

Deadlock is not possible because there are 4 resources, 3 threads, and each
thread requests only 2 resources. Worst case is that each of the 3 thread holds
one resource and tries to acquire the other, but even in this case there’s one
resource left that allows at least one thread to make progress, avoiding deadlock.

CS 3204 Spring 2006 Midterm Solution

5/6

4 Scheduling (10 pts)
Assume that Pintos’s thread_set_priority() function is extended such that it takes
an argument of type tid_t. thread_set_priority(t, p) sets the priority of
thread with thread id t to p.

#define HIGH_PRIORITY PRI_DEFAULT - 5
#define MEDIUM_PRIORITY PRI_DEFAULT
#define LOW_PRIORITY PRI_DEFAULT + 5

void printer(void *name)
{
 while (1)
 printf("%s", name);
}

int main()
{
 tid_t t[4];
 int i, c;

 ASSERT (!enable_mlfqs);

 thread_set_priority(thread_current()->tid, HIGH_PRIORITY);
 t[0] = thread_create("a-thread", LOW_PRIORITY, printer, "A");
 t[1] = thread_create("b-thread", LOW_PRIORITY, printer, "B");
 t[2] = thread_create("c-thread", LOW_PRIORITY, printer, "C");
 t[3] = thread_create("d-thread", LOW_PRIORITY, printer, "D");

 c = 0;
 for (i = 0; i < 10; i++)
 {
 thread_set_priority (t[c], MEDIUM_PRIORITY);
 timer_sleep (TIMER_FREQ);
 thread_set_priority (t[c], LOW_PRIORITY);
 c = (c + 1) % 4;
 }
}

a) (8 pts) What would this kernel output when run, assuming that strict
priority scheduling is used?

It would output
AAAAA…AAAAAABBBBBB…BBBBBBCCCCCC…CCCCCDDDDDD…DDDDDDD
AAAAA…AAAAAABBBBBB…BBBBBBCCCCCC…CCCCCDDDDDD…DDDDDDD
AAAAA…AAAAAABBBBBB…BBBBBB
switching 10 times between threads, once every second, until 10 seconds have
passed.
[After that, either the kernel would shut down (if –q was given) or the threads
would continue to run and output
AAAAA…AAAAAABBBBBB…BBBBBBCCCCCC…CCCCCDDDDDD…DDDDDDD… ad infinitum
switching every time slice.]
[8 points for a fully correct answer that covered the first 10 seconds (we didn’t say if the main
thread would shut down the system afterwards.)
For those solutions that said the output to be ABCDABCDABCD 6 points were awarded]

b) (2 pts) What other scheduling policy for threads t[0] to t[3] would produce
the same output?

CS 3204 Spring 2006 Midterm Solution

6/6

Round-robin. The main thread manipulates the priorities of the other threads
such that a round-robin scheduling policy is produced.
[2 points for the correct answer
Some of the answers said that FCFS would produce a similar output which is incorrect as FCFS
does not preempt a process.]

5 Short Questions (8 pts)
a) (4 pts) Why are page sizes always powers of 2?

Because then the virtual page number can be obtained from the virtual address
simply by considering a number of higher-order bits. This would not work if page
sizes weren’t powers of 2.
[4 pts for a fully correct answer.
Partial credits were assigned to solutions that mentioned about the virtual to physical address
translations. Some of the solutions mentioned that it is efficient to have the page sizes as powers
of 2 because all data is internally stored in a binary format. Such solutions received no credit.
Also solutions that did not mention about the address translation and stated that the
fragmentation can be avoided did not get any credits.]

b) (4 pts) Is it ever safe to pass a pointer to a local variable to another
thread? If not, say why not. If so, say under what circumstances.

It is safe if you know that the thread to which the pointer is passed won’t access it
after the function that defines the local variable has exited. This can be ensured
using synchronization mechanisms such as semaphores, condition variables, or
join()/wait(). (Potential examples of this in the projects were the timer_sleep()
implementation in Project 1 and the process_execute() implementation in Project
2.)
[4 pts for a fully correct answer.
Some assumed that the address space could switch between threads (if they’re processes), in
which case the pointer would point to something else. This is true, but if the variable is in kernel
code on the kernel stack it would still be accessible, at least until the other process returns from
kernel mode – so it could be safe. We deducted 1 pts for this answer.
Some ignored the lifetime issues at all and pointed out that locking is required. This however
applies to any shared variable and does not address the question specifically.]

