
1

Chapter 8: Main MemoryChapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 8: Memory ManagementChapter 8: Memory Management

Background
Swapping
Contiguous Memory Allocation
Paging
Structure of the Page Table
Segmentation
Example: The Intel Pentium

8.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ObjectivesObjectives

To provide a detailed description of various ways of
organizing memory hardware
To discuss various memory-management techniques,
including paging and segmentation
To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with
paging

8.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

Program must be brought (from disk) into memory and placed
within a process for it to be run
Main memory and registers are only storage CPU can access
directly
Register access in one CPU clock (or less)
Main memory can take many cycles
Cache sits between main memory and CPU registers
Protection of memory required to ensure correct operation

8.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Base and Limit RegistersBase and Limit Registers

A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Binding of Instructions and Data to MemoryBinding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses
can happen at three different stages

Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes
Load time: Must generate relocatable code if memory
location is not known at compile time
Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers)

2

8.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MultistepMultistep Processing of a User Program Processing of a User Program

8.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical vs. Physical Address SpaceLogical vs. Physical Address Space

The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

Logical address – generated by the CPU; also referred to
as virtual address
Physical address – address seen by the memory unit

Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

8.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MemoryMemory--Management Unit (Management Unit (MMUMMU))

Hardware device that maps virtual to physical address

In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

The user program deals with logical addresses; it never sees the
real physical addresses

8.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic relocation using a relocation registerDynamic relocation using a relocation register

8.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic LoadingDynamic Loading

Routine is not loaded until it is called
Better memory-space utilization; unused routine is never loaded
Useful when large amounts of code are needed to handle
infrequently occurring cases
No special support from the operating system is required
implemented through program design

8.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic LinkingDynamic Linking

Linking postponed until execution time
Small piece of code, stub, used to locate the appropriate
memory-resident library routine
Stub replaces itself with the address of the routine, and
executes the routine
Operating system needed to check if routine is in processes’
memory address
Dynamic linking is particularly useful for libraries
System also known as shared libraries

3

8.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SwappingSwapping

A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these memory
images

Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process
can be loaded and executed

Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

Modified versions of swapping are found on many systems (i.e., UNIX,
Linux, and Windows)
System maintains a ready queue of ready-to-run processes which have
memory images on disk

8.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of SwappingSchematic View of Swapping

8.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

Main memory usually into two partitions:
Resident operating system, usually held in low memory with
interrupt vector
User processes then held in high memory

Relocation registers used to protect user processes from each
other, and from changing operating-system code and data

Base register contains value of smallest physical address
Limit register contains range of logical addresses – each
logical address must be less than the limit register
MMU maps logical address dynamically

8.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

HW address protection with base and limit registersHW address protection with base and limit registers

8.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation (Cont.)Contiguous Allocation (Cont.)

Multiple-partition allocation
Hole – block of available memory; holes of various size are
scattered throughout memory
When a process arrives, it is allocated memory from a hole
large enough to accommodate it
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Dynamic StorageDynamic Storage--Allocation ProblemAllocation Problem

First-fit: Allocate the first hole that is big enough
Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

Produces the smallest leftover hole
Worst-fit: Allocate the largest hole; must also search entire
list

Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of speed
and storage utilization

4

8.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FragmentationFragmentation

External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous
Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used
Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory together in
one large block
Compaction is possible only if relocation is dynamic, and is
done at execution time
I/O problem

Latch job in memory while it is involved in I/O
Do I/O only into OS buffers

8.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PagingPaging

Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available
Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8,192 bytes)
Divide logical memory into blocks of same size called pages
Keep track of all free frames
To run a program of size n pages, need to find n free frames
and load program
Set up a page table to translate logical to physical addresses
Internal fragmentation

8.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation SchemeAddress Translation Scheme

Address generated by CPU is divided into:

Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

8.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging HardwarePaging Hardware

8.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Model of Logical and Physical MemoryPaging Model of Logical and Physical Memory

8.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging ExamplePaging Example

32-byte memory and 4-byte pages

5

8.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free FramesFree Frames

Before allocation After allocation

8.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation of Page TableImplementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) points to the page table
Page-table length register (PRLR) indicates size of the
page table
In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.
The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)
Some TLBs store address-space identifiers (ASIDs) in
each TLB entry – uniquely identifies each process to provide
address-space protection for that process

8.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Associative MemoryAssociative Memory

Associative memory – parallel search

Address translation (p, d)
If p is in associative register, get frame # out
Otherwise get frame # from page table in memory

Page # Frame #

8.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Hardware With TLBPaging Hardware With TLB

8.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Effective Access TimeEffective Access Time

Associative Lookup = ε time unit
Assume memory cycle time is 1 microsecond
Hit ratio – percentage of times that a page number is found
in the associative registers; ratio related to number of
associative registers
Hit ratio = α
Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)
= 2 + ε – α

8.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory ProtectionMemory Protection

Memory protection implemented by associating protection bit
with each frame

Valid-invalid bit attached to each entry in the page table:
“valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page
“invalid” indicates that the page is not in the process’
logical address space

6

8.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table

8.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared PagesShared Pages

Shared code
One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).
Shared code must appear in same location in the logical
address space of all processes

Private code and data
Each process keeps a separate copy of the code and data
The pages for the private code and data can appear
anywhere in the logical address space

8.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Pages ExampleShared Pages Example

8.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Structure of the Page TableStructure of the Page Table

Hierarchical Paging

Hashed Page Tables

Inverted Page Tables

8.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hierarchical Page TablesHierarchical Page Tables

Break up the logical address space into multiple page tables

A simple technique is a two-level page table

8.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--Level PageLevel Page--Table SchemeTable Scheme

7

8.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--Level Paging ExampleLevel Paging Example

A logical address (on 32-bit machine with 1K page size) is divided into:
a page number consisting of 22 bits
a page offset consisting of 10 bits

Since the page table is paged, the page number is further divided into:
a 12-bit page number
a 10-bit page offset

Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

page number page offset

pi p2 d

12 10 10

8.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

AddressAddress--Translation SchemeTranslation Scheme

8.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ThreeThree--level Paging Schemelevel Paging Scheme

8.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TablesHashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is
extracted.

8.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TableHashed Page Table

8.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page TableInverted Page Table

One entry for each real page of memory
Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page
Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs
Use hash table to limit the search to one — or at most a
few — page-table entries

8

8.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page Table ArchitectureInverted Page Table Architecture

8.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SegmentationSegmentation

Memory-management scheme that supports user view of memory
A program is a collection of segments. A segment is a logical unit
such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

8.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

UserUser’’s View of a Programs View of a Program

8.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>,

Segment table – maps two-dimensional physical addresses;
each table entry has:

base – contains the starting physical address where the
segments reside in memory
limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment
table’s location in memory
Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

8.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

Protection
With each entry in segment table associate:

validation bit = 0 ⇒ illegal segment
read/write/execute privileges

Protection bits associated with segments; code sharing
occurs at segment level
Since segments vary in length, memory allocation is a
dynamic storage-allocation problem
A segmentation example is shown in the following diagram

9

8.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation HardwareSegmentation Hardware

8.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of SegmentationExample of Segmentation

8.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example: The Intel PentiumExample: The Intel Pentium

Supports both segmentation and segmentation with paging
CPU generates logical address

Given to segmentation unit
Which produces linear addresses

Linear address given to paging unit
Which generates physical address in main memory
Paging units form equivalent of MMU

8.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical to Physical Address Translation in Logical to Physical Address Translation in
PentiumPentium

8.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Intel Pentium SegmentationIntel Pentium Segmentation

8.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Pentium Paging ArchitecturePentium Paging Architecture

10

8.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linear Address in LinuxLinear Address in Linux

Broken into four parts:

8.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ThreeThree--level Paging in Linuxlevel Paging in Linux

End of Chapter 8End of Chapter 8

