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Module 6: Process SynchronizationModule 6: Process Synchronization

� Background

� The Critical-Section Problem

� Peterson’s Solution

� Synchronization Hardware

� Semaphores

� Classic Problems of Synchronization

� Monitors

� Synchronization Examples 

� Atomic Transactions
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BackgroundBackground

� Concurrent access to shared data may result in data 
inconsistency

� Maintaining data consistency requires mechanisms to 

ensure the orderly execution of cooperating processes

� Suppose that we wanted to provide a solution to the 

consumer-producer problem that fills all the buffers. We 
can do so by having an integer count that keeps track of 

the number of full buffers.  Initially, count is set to 0. It is
incremented by the producer after it produces a new 

buffer and is decremented by the consumer after it 
consumes a buffer.

6.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Producer Producer 

while (true) {

/*  produce an item and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}   
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ConsumerConsumer

while (true)  {

while (count == 0)

; // do nothing

nextConsumed =  buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/*  consume the item in nextConsumed

}
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Race ConditionRace Condition

� count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

� count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

� Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}
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Solution to CriticalSolution to Critical--Section ProblemSection Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and 

there exist some processes that wish to enter their critical section, 
then the selection of the processes that will enter the critical

section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times 
that other processes are allowed to enter their critical sections 

after a process has made a request to enter its critical section and 
before that request is granted

� Assume that each process executes at a nonzero speed 

� No assumption concerning relative speed of the N processes

6.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Peterson’s SolutionPeterson’s Solution

� Two process solution

� Assume that the LOAD and STORE instructions are atomic; 
that is, cannot be interrupted.

� The two processes share two variables:

� int turn; 

� Boolean flag[2]

� The variable turn indicates whose turn it is to enter the 
critical section.  

� The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true implies that process Pi
is ready!
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Algorithm for Process Algorithm for Process PPii

while (true) {

flag[i] = TRUE;

turn = j;

while ( flag[j] && turn == j);

CRITICAL SECTION

flag[i] = FALSE;

REMAINDER SECTION

}
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Synchronization HardwareSynchronization Hardware

� Many systems provide hardware support for critical section 
code

� Uniprocessors – could disable interrupts

� Currently running code would execute without 
preemption

� Generally too inefficient on multiprocessor systems

� Operating systems using this not broadly scalable

� Modern machines provide special atomic hardware 
instructions

� Atomic = non-interruptable

� Either test memory word and set value

� Or swap contents of two memory words
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TestAndndSetTestAndndSet Instruction Instruction 

� Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}
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Solution using Solution using TestAndSetTestAndSet

� Shared boolean variable lock., initialized to false.

� Solution:

while (true) {

while ( TestAndSet (&lock ))

;   /* do nothing

//    critical section

lock = FALSE;

//      remainder section 

}
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Swap  InstructionSwap  Instruction

� Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}
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Solution using SwapSolution using Swap

� Shared Boolean variable lock initialized to FALSE; Each 
process has a local Boolean variable key.

� Solution:

while (true)  {

key = TRUE;

while ( key == TRUE)

Swap (&lock, &key );

//    critical section

lock = FALSE;

//      remainder section 

}
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SemaphoreSemaphore

� Synchronization tool that does not require busy waiting 

� Semaphore S – integer variable

� Two standard operations modify S: wait() and signal()

� Originally called P() and V()

� Less complicated

� Can only be accessed via two indivisible (atomic) operations

� wait (S) { 

while S <= 0

; // no-op

S--;

}

� signal (S) { 

S++;

}
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Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

� Counting semaphore – integer value can range over an 

unrestricted domain

� Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement

� Also known as mutex locks

� Can implement a counting semaphore S as a binary semaphore

� Provides mutual exclusion

� Semaphore S;    //  initialized to 1

� wait (S);

Critical Section

signal (S);
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Semaphore ImplementationSemaphore Implementation

� Must guarantee that no two processes can execute wait () and 

signal () on the same semaphore at the same time

� Thus, implementation becomes the critical section problem 
where the wait and signal code are placed in the crtical

section.

� Could now have busy waiting in critical section 
implementation

� But implementation code is short

� Little busy waiting if critical section rarely occupied

� Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution.
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Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting

� With each semaphore there is an associated waiting queue. 

Each entry in a waiting queue has two data items:

� value (of type integer)

� pointer to next record in the list

� Two operations:

� block – place the process invoking the operation on the      

appropriate waiting queue.

� wakeup – remove one of processes in the waiting queue 
and place it in the ready queue.
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Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting (Cont.)(Cont.)

� Implementation of wait:

wait (S){ 

value--;

if (value < 0) { 

add this process to waiting queue

block();  }

}

� Implementation of signal:

Signal (S){ 

value++;

if (value <= 0) { 

remove a process P from the waiting queue

wakeup(P);  }

}
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Deadlock and StarvationDeadlock and Starvation

� Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

� Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal  (S); signal (Q);

signal (Q); signal (S);

� Starvation – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.
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Classical Problems of SynchronizationClassical Problems of Synchronization

� Bounded-Buffer Problem

� Readers and Writers Problem

� Dining-Philosophers Problem
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BoundedBounded--Buffer ProblemBuffer Problem

� N buffers, each can hold one item

� Semaphore mutex initialized to the value 1

� Semaphore full initialized to the value 0

� Semaphore empty initialized to the value N.
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Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

� The structure of the producer process

while (true)  {

//   produce an item

wait (empty);

wait (mutex);

//  add the item to the  buffer

signal (mutex);

signal (full);

}
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Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

� The structure of the consumer process

while (true) {

wait (full);

wait (mutex);

//  remove an item from  buffer

signal (mutex);

signal (empty);

//  consume the removed item

}
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ReadersReaders--Writers ProblemWriters Problem

� A data set is shared among a number of concurrent processes

� Readers – only read the data set; they do not perform any 
updates

� Writers   – can both read and write.

� Problem – allow multiple readers to read at the same time.  Only 
one single writer can access the shared data at the same time.

� Shared Data

� Data set

� Semaphore mutex initialized to 1.

� Semaphore wrt initialized to 1.

� Integer readcount initialized to 0.
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ReadersReaders--Writers Problem (Cont.)Writers Problem (Cont.)

� The structure of a writer process

while (true) {

wait (wrt) ;

//    writing is performed

signal (wrt) ;

}
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ReadersReaders--Writers Problem (Cont.)Writers Problem (Cont.)

� The structure of a reader process

while (true) {

wait (mutex) ;

readcount ++ ;

if (readercount == 1)  wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (redacount == 0)  signal (wrt) ;

signal (mutex) ;

}
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DiningDining--Philosophers ProblemPhilosophers Problem

� Shared data 

� Bowl of rice (data set)

� Semaphore chopstick [5] initialized to 1
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DiningDining--Philosophers Problem (Cont.)Philosophers Problem (Cont.)

� The structure of Philosopher i:

While (true)  { 

wait ( chopstick[i] );

wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

}

6.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Problems with SemaphoresProblems with Semaphores

� Correct use of semaphore operations:

� signal (mutex)  ….  wait (mutex)

� wait (mutex)  …  wait (mutex)

� Omitting  of wait (mutex) or signal (mutex) (or both)
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MonitorsMonitors

� A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

� Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code ( ….) { … }

…

}

}
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Schematic view of a MonitorSchematic view of a Monitor
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Condition VariablesCondition Variables

� condition x, y;

� Two operations on a condition variable:

� x.wait () – a process that invokes the operation is 

suspended.

� x.signal () – resumes one of processes (if any) that

invoked x.wait ()
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Monitor with Condition VariablesMonitor with Condition Variables
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Solution to Dining PhilosophersSolution to Dining Philosophers

monitor DP

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

� Each philosopher I invokes the operations pickup()

and putdown() in the following sequence:

dp.pickup (i)

EAT

dp.putdown (i)
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Monitor Implementation Using SemaphoresMonitor Implementation Using Semaphores

� Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

� Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

� Mutual exclusion within a monitor is ensured.
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Monitor ImplementationMonitor Implementation

� For each condition variable x, we  have:

semaphore x-sem; // (initially  = 0)

int x-count = 0;

� The operation x.wait can be implemented as:

x-count++;

if (next-count > 0)

signal(next);

else

signal(mutex);

wait(x-sem);

x-count--;
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Monitor ImplementationMonitor Implementation

� The operation x.signal can be implemented as:

if (x-count > 0) {

next-count++;

signal(x-sem);

wait(next);

next-count--;

}
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Synchronization ExamplesSynchronization Examples

� Solaris

� Windows XP

� Linux

� Pthreads
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Solaris SynchronizationSolaris Synchronization

� Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and multiprocessing

� Uses adaptive mutexes for efficiency when protecting data from 
short code segments

� Uses condition variables and readers-writers locks when longer 

sections of code need access to data

� Uses turnstiles to order the list of threads waiting to acquire either 

an adaptive mutex or reader-writer lock
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Windows XP SynchronizationWindows XP Synchronization

� Uses interrupt masks to protect access to global resources on 

uniprocessor systems

� Uses spinlocks on multiprocessor systems

� Also provides dispatcher objects which may act as either mutexes
and semaphores

� Dispatcher objects may also provide events

� An event acts much like a condition variable
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Linux SynchronizationLinux Synchronization

� Linux:

� disables interrupts to implement short critical sections

� Linux provides:

� semaphores

� spin locks
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PthreadsPthreads SynchronizationSynchronization

� Pthreads API is OS-independent

� It provides:

� mutex locks

� condition variables

� Non-portable extensions include:

� read-write locks

� spin locks
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Atomic TransactionsAtomic Transactions

� System Model

� Log-based Recovery

� Checkpoints

� Concurrent Atomic Transactions
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System ModelSystem Model

� Assures that operations happen as a single logical unit of work, in 
its entirety, or not at all

� Related to field of database systems

� Challenge is assuring atomicity  despite computer system failures

� Transaction - collection of instructions or operations that performs 

single logical function

� Here we are concerned with changes to stable storage – disk

� Transaction is series of read and write operations

� Terminated by commit (transaction successful) or abort

(transaction failed) operation

� Aborted transaction must be rolled back to undo any changes it 
performed
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Types of Storage MediaTypes of Storage Media

� Volatile storage – information stored here does not survive system 
crashes

� Example:  main memory, cache

� Nonvolatile storage – Information usually survives crashes

� Example:  disk and tape

� Stable storage – Information never lost

� Not actually possible, so approximated via replication or RAID to 
devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of 

information on volatile storage
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LogLog--Based RecoveryBased Recovery

� Record to stable storage information about all modifications by a 

transaction

� Most common is write-ahead logging

� Log on stable storage, each log record describes single 
transaction write operation, including

� Transaction name

� Data item name

� Old value

� New value

� <Ti starts> written to log when transaction Ti starts

� <Ti commits> written when Ti commits

� Log entry must reach stable storage before operation on 

data occurs
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LogLog--Based Recovery AlgorithmBased Recovery Algorithm

� Using the log, system can handle any volatile memory errors

� Undo(Ti) restores value of all data updated by Ti

� Redo(Ti) sets values of all data in transaction Ti to new values

� Undo(Ti) and redo(Ti) must be idempotent

� Multiple executions must have the same result as one 
execution

� If system fails, restore state of all updated data via log

� If log contains <Ti starts> without <Ti commits>, undo(Ti)

� If log contains <Ti starts> and <Ti commits>, redo(Ti)
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CheckpointsCheckpoints

� Log could become long, and recovery could take long

� Checkpoints shorten log and recovery time.

� Checkpoint scheme:

1. Output all log records currently in volatile storage to stable 

storage

2. Output all modified data from volatile to stable storage

3. Output a log record <checkpoint> to the log on stable storage

� Now recovery only includes Ti, such that Ti started executing 

before the most recent checkpoint, and all transactions after Ti All 
other transactions already on stable storage
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Concurrent TransactionsConcurrent Transactions

� Must be equivalent to serial execution – serializability

� Could perform all transactions in critical section

� Inefficient, too restrictive

� Concurrency-control algorithms provide serializability
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SerializabilitySerializability

� Consider two data items A and B

� Consider Transactions T0 and T1

� Execute T0, T1 atomically

� Execution sequence called schedule

� Atomically executed transaction order called serial schedule

� For N transactions, there are N! valid serial schedules
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Schedule 1: TSchedule 1: T00 then Tthen T11
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NonserialNonserial ScheduleSchedule

� Nonserial schedule allows overlapped execute

� Resulting execution not necessarily incorrect

� Consider schedule S, operations Oi, Oj

� Conflict if access same data item, with at least one write

� If Oi, Oj consecutive and operations of different transactions & Oi

and Oj don’t conflict

� Then S’ with swapped order Oj Oi equivalent to S

� If S can become S’ via swapping nonconflicting operations

� S is conflict serializable
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Schedule 2: Concurrent Serializable ScheduleSchedule 2: Concurrent Serializable Schedule
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LockingLocking ProtocolProtocol

� Ensure serializability by associating lock with each data item

� Follow locking protocol for access control

� Locks

� Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q 

but not write Q

� Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read 

and write Q

� Require every transaction on item Q acquire appropriate lock

� If lock already held, new request may have to wait

� Similar to readers-writers algorithm
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TwoTwo--phase Locking Protocolphase Locking Protocol

� Generally ensures conflict serializability

� Each transaction issues lock and unlock requests in two phases

� Growing – obtaining locks

� Shrinking – releasing locks

� Does not prevent deadlock
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TimestampTimestamp--based Protocolsbased Protocols

� Select order among transactions in advance – timestamp-ordering

� Transaction Ti associated with timestamp TS(Ti) before Ti starts

� TS(Ti) < TS(Tj) if Ti entered system before Tj

� TS can be generated from system clock or as logical counter 

incremented at each entry of transaction

� Timestamps determine serializability order

� If TS(Ti) < TS(Tj), system must ensure produced schedule 

equivalent to serial schedule where Ti appears before Tj
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TimestampTimestamp--based Protocol Implementationbased Protocol Implementation

� Data item Q gets two timestamps

� W-timestamp(Q) – largest timestamp of any transaction that 
executed write(Q) successfully

� R-timestamp(Q) – largest timestamp of successful read(Q)

� Updated whenever read(Q) or write(Q) executed

� Timestamp-ordering protocol assures any conflicting read and write
executed in timestamp order

� Suppose Ti executes read(Q)

� If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that 
was already overwritten

� read operation rejected and Ti rolled back

� If TS(Ti) ≥W-timestamp(Q)

� read executed, R-timestamp(Q) set to max(R-
timestamp(Q), TS(Ti))
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TimestampTimestamp--ordering Protocolordering Protocol

� Suppose Ti executes write(Q)

� If TS(Ti) < R-timestamp(Q), value Q produced by Ti was 

needed previously and Ti assumed it would never be produced

� Write operation rejected, Ti rolled back

� If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete 
value of Q

� Write operation rejected and Ti rolled back

� Otherwise, write executed

� Any rolled back transaction Ti is assigned new timestamp and 
restarted

� Algorithm ensures conflict serializability and freedom from deadlock
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Schedule Possible Under Timestamp ProtocolSchedule Possible Under Timestamp Protocol

End of Chapter 6End of Chapter 6


