

Chapter 4: Threads

- Overview
- Multithreading Models
- Threading Issues
- Pthreads
- Windows XP Threads
- Linux Threads
- Java Threads

Operating System Concepts

4.5

User Threads

- Thread management done by user-level threads library
- Three primary thread libraries:
 - POSIX Pthreads
 - Win32 threads
 - Java threads

Operating System Concepts

4.5

Kernel Threads

- Supported by the Kernel
- Examples
 - Windows XP/2000
 - Solaris
 - Linux
 - Tru64 UNIX
 - Mac OS X

Operating System Concepts

4.6

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Solaris prior to version 9
- Windows NT/2000 with the *ThreadFiber* package

Operating System Concepts

4.12

Two-level Model

- Similar to M:M, except that it allows a user thread to be bound to kernel thread
- Examples
 - IRIX
 - HP-UX
 - Tru64 UNIX
 - Solaris 8 and earlier

Operating System Concepts

Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all threads?

Operating System Concepts

4.17

- Terminating a thread before it has finished
- Two general approaches:
 - Asynchronous cancellation terminates the target thread immediately
 - **Deferred cancellation** allows the target thread to periodically check if it should be cancelled

Operating System Concepts

4.18

Signal Handling

- Signals are used in UNIX systems to notify a process that a particular event has occurred
- A signal handler is used to process signals
 - 1. Signal is generated by particular event
 - 2. Signal is delivered to a process
 - 3. Signal is handled
- Options:
 - Deliver the signal to the thread to which the signal applies
 - Deliver the signal to every thread in the process
 - Deliver the signal to certain threads in the process
 - Assign a specific threa to receive all signals for the process

Operating System Concepts

4.19

Silberschatz, Galvin and Gagne ©2005

Thread Pools

- Create a number of threads in a pool where they await work
- Advantages:
 - Usually slightly faster to service a request with an existing thread than create a new thread
 - Allows the number of threads in the application(s) to be bound to the size of the pool

Operating System Concepts

4.20

Thread Specific Data

- Allows each thread to have its own copy of data
- Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Operating System Concepts

4.21

- Both M:M and Two-level models require communication to maintain the appropriate number of kernel threads allocated to the application
- Scheduler activations provide upcalls a communication mechanism from the kernel to the thread library
- This communication allows an application to maintain the correct number kernel threads

Operating System Concepts

4 2

Pthreads

- A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization
- API specifies behavior of the thread library, implementation is up to development of the library
- Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Operating System Concepts

4.23

- Implements the one-to-one mapping
- Each thread contains
 - A thread id
 - Register set
 - Separate user and kernel stacks
 - Private data storage area
- The register set, stacks, and private storage area are known as the **context** of the threads
- The primary data structures of a thread include:
 - ETHREAD (executive thread block)
 - KTHREAD (kernel thread block)
 - TEB (thread environment block)

Operating System Concepts

4.24

Linux Threads

- Linux refers to them as *tasks* rather than *threads*
- Thread creation is done through **clone()** system call
- clone() allows a child task to share the address space of the parent task (process)

Operating System Concepts

4.25

- Java threads may be created by:
 - Extending Thread class
 - Implementing the Runnable interface

Operating System Concepts

4 26

