Chapter 14: Protection
Chapter 14: Protection

- Goals of Protection
- Principles of Protection
- Domain of Protection
- Access Matrix
- Implementation of Access Matrix
- Access Control
- Revocation of Access Rights
- Capability-Based Systems
- Language-Based Protection
Objectives

- Discuss the goals and principles of protection in a modern computer system
- Explain how protection domains combined with an access matrix are used to specify the resources a process may access
- Examine capability and language-based protection systems
Goals of Protection

- Operating system consists of a collection of objects, hardware or software

- Each object has a unique name and can be accessed through a well-defined set of operations.

- Protection problem - ensure that each object is accessed correctly and only by those processes that are allowed to do so.
Principles of Protection

- Guiding principle – principle of least privilege
 - Programs, users and systems should be given just enough privileges to perform their tasks
Domain Structure

- Access-right = \langle object-name, rights-set \rangle
 where rights-set is a subset of all valid operations that can be performed on the object.
Domain Implementation (UNIX)

- System consists of 2 domains:
 - User
 - Supervisor

- UNIX
 - Domain = user-id
 - Domain switch accomplished via file system.
 - Each file has associated with it a domain bit (setuid bit).
 - When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.
Domain Implementation (Multics)

- Let D_i and D_j be any two domain rings.
- If $j < i \Rightarrow D_i \subseteq D_j$
View protection as a matrix (**access matrix**)

- Rows represent domains
- Columns represent objects

Access(i, j) is the set of operations that a process executing in Domain_i can invoke on Object_j
Access Matrix

<table>
<thead>
<tr>
<th>domain</th>
<th>object</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td></td>
<td>read</td>
<td></td>
<td>read</td>
<td></td>
</tr>
<tr>
<td>D_2</td>
<td></td>
<td></td>
<td></td>
<td>print</td>
<td></td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td></td>
<td>read</td>
<td>execute</td>
<td></td>
</tr>
<tr>
<td>D_4</td>
<td></td>
<td>read</td>
<td>write</td>
<td></td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>write</td>
<td></td>
</tr>
</tbody>
</table>

Figure A
Use of Access Matrix

- If a process in Domain D_i tries to do “op” on object O_j, then “op” must be in the access matrix.

- Can be expanded to dynamic protection.
 - Operations to add, delete access rights.
 - Special access rights:
 - owner of O_i
 - copy op from O_i to O_j
 - control – D_i can modify D_j access rights
 - transfer – switch from domain D_i to D_j
Use of Access Matrix (Cont.)

- Access matrix design separates mechanism from policy.
 - Mechanism
 - Operating system provides access-matrix + rules.
 - If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced.
 - Policy
 - User dictates policy.
 - Who can access what object and in what mode.
Implementation of Access Matrix

- Each column = Access-control list for one object
 Defines who can perform what operation.

 Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

- Each Row = Capability List (like a key)
 Fore each domain, what operations allowed on what objects.

 Object 1 – Read
 Object 4 – Read, Write, Execute
 Object 5 – Read, Write, Delete, Copy
Access Matrix of Figure A With Domains as Objects

<table>
<thead>
<tr>
<th>domain</th>
<th>object</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>laser printer</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>read</td>
<td>read</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>switch</td>
<td></td>
</tr>
<tr>
<td>D_2</td>
<td></td>
<td></td>
<td>print</td>
<td></td>
<td></td>
<td>switch</td>
<td>switch</td>
<td>switch</td>
<td></td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td>read</td>
<td>execute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_4</td>
<td>read write</td>
<td>read write</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>switch</td>
<td></td>
</tr>
</tbody>
</table>
Access Matrix with Copy Rights

(a)

<table>
<thead>
<tr>
<th>Domain</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>execute</td>
<td></td>
<td>write*</td>
</tr>
<tr>
<td>D_2</td>
<td>execute</td>
<td>read*</td>
<td>execute</td>
</tr>
<tr>
<td>D_3</td>
<td>execute</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Domain</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>execute</td>
<td></td>
<td>write*</td>
</tr>
<tr>
<td>D_2</td>
<td>execute</td>
<td>read*</td>
<td>execute</td>
</tr>
<tr>
<td>D_3</td>
<td>execute</td>
<td></td>
<td>read</td>
</tr>
</tbody>
</table>
Access Matrix With Owner Rights

<table>
<thead>
<tr>
<th>object</th>
<th>domain</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td></td>
<td>owner</td>
<td>execute</td>
<td>write</td>
</tr>
<tr>
<td>D_2</td>
<td></td>
<td></td>
<td>read*</td>
<td>read* owner</td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td>execute</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>object</th>
<th>domain</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td></td>
<td>owner</td>
<td>execute</td>
<td>write</td>
</tr>
<tr>
<td>D_2</td>
<td></td>
<td>owner</td>
<td>read*</td>
<td>read* owner</td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td></td>
<td>write</td>
<td>write</td>
</tr>
</tbody>
</table>

(b)
Modified Access Matrix of Figure B

<table>
<thead>
<tr>
<th></th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>laser printer</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>read</td>
<td>read</td>
<td></td>
<td></td>
<td></td>
<td>switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_2</td>
<td></td>
<td></td>
<td>print</td>
<td></td>
<td></td>
<td>switch</td>
<td></td>
<td>switch</td>
</tr>
<tr>
<td>D_3</td>
<td></td>
<td>read</td>
<td>execute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_4</td>
<td>write</td>
<td>write</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>switch</td>
<td></td>
</tr>
</tbody>
</table>
Protection can be applied to non-file resources

Solaris 10 provides role-based access control to implement least privilege

- Privilege is right to execute system call or use an option within a system call
- Can be assigned to processes
- Users assigned roles granting access to privileges and programs
Role-based Access Control in Solaris 10

user 1

role 1

privileges 1

privileges 2

executes with role 1 privileges

process
Revocation of Access Rights

- **Access List** – Delete access rights from access list.
 - Simple
 - Immediate

- **Capability List** – Scheme required to locate capability in the system before capability can be revoked.
 - Reacquisition
 - Back-pointers
 - Indirection
 - Keys
Capability-Based Systems

- Hydra
 - Fixed set of access rights known to and interpreted by the system.
 - Interpretation of user-defined rights performed solely by user's program; system provides access protection for use of these rights.

- Cambridge CAP System
 - Data capability - provides standard read, write, execute of individual storage segments associated with object.
 - Software capability - interpretation left to the subsystem, through its protected procedures.
Language-Based Protection

- Specification of protection in a programming language allows the high-level description of policies for the allocation and use of resources.

- Language implementation can provide software for protection enforcement when automatic hardware-supported checking is unavailable.

- Interpret protection specifications to generate calls on whatever protection system is provided by the hardware and the operating system.
Protection in Java 2

- Protection is handled by the Java Virtual Machine (JVM)

- A class is assigned a protection domain when it is loaded by the JVM.

- The protection domain indicates what operations the class can (and cannot) perform.

- If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the operation can be performed by the library.
Stack Inspection

<table>
<thead>
<tr>
<th>protection domain:</th>
<th>untrusted applet</th>
<th>URL loader</th>
<th>networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>socket permission:</td>
<td>none</td>
<td>*.lucent.com:80, connect</td>
<td>any</td>
</tr>
<tr>
<td>class:</td>
<td>gui:</td>
<td>get(URL u):</td>
<td>open(Addr a):</td>
</tr>
</tbody>
</table>
| | | doPrivileged {
| | | open('proxy.lucent.com:80'); |
| | | } |
| | | <request u from proxy> |
| | | ... |
| | | ... |
| | | ... |
| | | ... |
End of Chapter 14