Chapter 19 – Security

Outline

19.1 Introduction
19.2 Cryptography
19.2.1 Secret-Key Cryptography
19.2.2 Public-Key Cryptography
19.3 Authentication
19.3.1 Basic Authentication
19.3.2 Biometrics and Smart Cards
19.3.3 Kerberos
19.3.4 Single Sign-On
19.4 Access Control
19.4.1 Access Rights and Protection Domains
19.4.2 Access Control Models and Policies
19.4.3 Access Control Mechanisms
19.5 Security Attacks
19.5.1 Cryptanalysis
19.5.2 Viruses and Worms
19.5.3 Denial-of-Service (DoS) Attacks
19.5.4 Software Exploitation
19.5.5 System Penetration
19.6 Attack Prevention and Security Solutions
19.6.1 Firewalls
19.6.2 Intrusion Detection Systems (IDSs)
19.6.3 Antivirus Software
19.6.4 Security Patches
19.6.5 Secure File Systems
19.6.6 Orange Book Security
19.7 Secure Communication
19.8 Key Agreement Protocols
19.8.1 Key Management
19.8.2 Digital Signatures
19.9 Public-Key Infrastructure, Certificates and Certificate Authorities
19.10 Secure Communication Protocols
19.10.1 Secure Sockets Layer (SSL)
19.10.2 Virtual Private Networks (VPNs) and IP Security (IPSec)
19.10.3 Wireless Security
Outline (continued)
19.11 Steganography
19.12 Proprietary and Open-Source Security
19.13 Case Study: UNIX Systems Security

Objectives

- After reading this chapter, you should understand:
 - the role of authentication in providing secure systems.
 - access control models, policies and mechanisms.
 - public-key/private-key cryptography.
 - security and authentication protocols, such as SSL and Kerberos.
 - digital signatures, digital certificates and certificate authorities.
 - security threats, such as viruses, worms, exploits and denial-of-service attacks.
 - Virtual Private Networks and IPSec.
19.1 Introduction

- Computer security
 - Addresses the issue of preventing unauthorized access to resources and information maintained by computers
 - Encompasses the following issues:
 - Guaranteeing the privacy and integrity of sensitive data
 - Restricting the use of computer resources
 - Providing resilience against malicious attempts to incapacitate the system
 - Employs mechanisms that shield resources such as hardware and operating system services from attack

19.2 Cryptography

- Cryptography
 - Encoding and decoding data so that it can be interpreted only by the intended recipients
 - Data is transformed by means of a cipher or cryptosystem
 - Modern cryptosystems rely on algorithms that operate on the individual bits or blocks (a group of bits) of data, rather than letters of the alphabet
 - Encryption and decryption keys
 - Binary strings of a given length
19.2.1 Secret-Key Cryptography

- Secret-key cryptography
 - Also known as symmetric cryptography
 - Uses the same secret key to encrypt and decrypt a message
 - Sender
 - Encrypts a message using the secret key
 - Sends encrypted message to the intended recipient
 - Recipient
 - Decrypts the message using the same secret key

Figure 19.1 Encrypting and decrypting a message using a secret key.
19.2.1 Secret-Key Cryptography

- Limitation of secret-key cryptography
 - Before two parties can communicate securely, they must find a secure way to exchange the secret key
 - Can be done by courier or a key distribution center (KDC)
 - KDCs generate session keys to clients
- Examples of secret-key cryptography:
 - DES
 - 3DES
 - AES
19.2.2 Public-Key Cryptography

- **Public-key cryptography**
 - Solves the problem of securely exchanging symmetric keys
 - **Asymmetric**
 - Employs two inversely related keys:
 - Public key
 - Freely distributed
 - Private key
 - Kept secret by its owner
 - If the public key encrypts a message, only the corresponding private key can decrypt it

Figure 19.3 Encrypting and decrypting a message using public-key cryptography.
19.2.2 Public-Key Cryptography

- If the decryption key is the sender’s public key and the encryption key is the sender’s private key, the sender of the message can be authenticated
 - Message should be encrypted first using the receiver’s public key, then with the sender’s secret key
 - Public key provides confidentiality
 - Secret key provides authentication

- Examples of public-key cryptography:
 - RSA
 - Pretty Good Privacy (PGP)
19.3 Authentication

- **Authentication**
 - Identifying users and the actions they are allowed to perform
 - A user can be identified by:
 - A unique characteristic of the person (e.g., fingerprints, voiceprints, retina scans and signatures)
 - Ownership of an item (e.g., badges, identification cards, keys and smart cards)
 - User knowledge (e.g., passwords, personal identification numbers (PINs) and lock combinations)

19.3.1 Basic Authentication

- **Simple password protection**
 - Most common authentication scheme
 - The user chooses a password, memorizes it and presents it to the system to gain admission to a resource or system

- **Weaknesses of password protection**
 - Users tend to choose passwords that are easy to remember
 - For example: the name of a spouse or pet
 - Someone who has obtained personal information about the user might try to log in several times using passwords that are characteristic of the user
 - Several repeated attempts might result in a security breach

- **Password salting**
 - Technique that inserts characters at various positions in the password before encryption
 - Can thwart attempts at recovering passwords from password files
19.3.1 Basic Authentication

Figure 19.5 Salting passwords (Base 64 encoding).

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>Ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>password</td>
<td>cGFzc3dvcmQ=</td>
</tr>
<tr>
<td>password</td>
<td>cHNhc2Fzd2xvcmRk</td>
</tr>
<tr>
<td>newpassword</td>
<td>bmV3cGFzc3dvcmQ=</td>
</tr>
<tr>
<td>newpassword</td>
<td>bnNtZ2FtYmF0c3NtZ2NkcmQ=</td>
</tr>
</tbody>
</table>

19.3.2 Biometrics and Smart Cards

- **Biometrics**
 - Uses unique personal information to identify a user
 - Fingerprints
 - Eyeball iris scans
 - Face scans

- **Smart cards**
 - Often designed to resemble a credit card
 - Can serve many different functions, from authentication to data storage
 - Most popular: memory cards and microprocessor cards
19.3.3 Kerberos

- **Kerberos**
 - Freely available, open-source protocol developed at MIT
 - Can provide protection against internal security attacks
 - Employs secret-key cryptography
 - To authenticate users in a network
 - To maintain the integrity and privacy of network communications

19.3.3 Kerberos

- **Kerberos implementation**
 - Uses an authentication server and a Ticket Granting Service to control access to network resources
 1. Client submits username/password to authentication server
 2. If valid, the authentication server issues a Ticket-Granting Ticket (TGT) encrypted with the client’s secret key
 3. Client sends decrypted TGT to the TGS when requesting a resource. If valid, TGS issues a service ticket encrypted with client’s secret key.
 4. Client decrypts service ticket, which it uses to access network resources
19.3.4 Single Sign-On

- Single sign-on
 - Simplifies the authentication process
 - Allows the user to log in once using a single password to access multiple applications across multiple computers
 - Important to secure single sign-on passwords
 - If a password becomes available to crackers, all applications protected by that password can be accessed and attacked
 - Available in forms of workstation login scripts, authentication server scripts and token-based authentication

19.4 Access Control

- Today’s operating systems must
 - Carefully guard against unintentional and malicious use of computer resources
 - Protect operating system services and sensitive information from users and/or software that have gained access to computer resources

- Access rights
 - Protect system resources and services from potentially dangerous users
 - Restrict or limit the actions that can be performed on resources
 - Typically managed by access control lists or capability lists
19.4.1 Access Rights and Protection Domains

- The key to operating system security is to control access to system resources
- The most common access rights:
 - Read
 - Write
 - Execute
- Techniques employed to manage access rights:
 - Access control matrices
 - Access control lists
 - Capability lists

19.4.2 Access Control Models and Policies

- Security model
 - Defines a system’s subjects, objects and privileges
 - Examples:
 - User classes
 - Role-based access control
 - Discretionary Access Control (DAC)
 - File owner controls permissions
 - Mandatory Access Control (MAC)
 - Predefine a central permission scheme
19.4.2 Access Control Models and Policies

- **Security policy**
 - Typically specified by the user and/or system administrator
 - Defines which privileges to objects are assigned to subjects
 - Most incorporate the principle of least privilege
 - Subject is granted access only to the objects it requires to perform its tasks

- **Security mechanism**
 - The method by which the system implements the security policy

19.4.3 Access Control Mechanisms

- **Access control matrices**
 - Match subjects and objects to the appropriate access rights
 - Concept behind the model is simple
 - Most systems contain many subjects and objects, resulting in a large matrix that is an inefficient means for access control
19.4.3 Access Control Mechanisms

- Access control lists and capability lists
 - Derived from the principle of least privilege
 - Often more efficient and flexible methods of managing access rights
 - Capability
 - Pointer or token that grants access to a subject that possesses it
19.4.3 Access Control Mechanisms

Figure 19.7 Access control list derived from the access control matrix.

```
1 File A:
2   <Alice, {read*, write*}>    3 File B:
3     <Bob, {read*, write*}>   6  <Alice, {read*, write*}>
4     <Chris, {read}>          7   <Bob, {read*, write*}>
5 Printer:
9     <Alice, {print*}>        8   <David, {read}>            10  <Alice, {print*}>
11    <Bob, {print}>          11  <Bob, {print}>            12  <Chris, {print}>
```

19.5 Security Attacks

- Cryptanalytic attacks
- Viruses and worms
- Denial-of-service attacks
 - Domain name system (DNS) attack
- Software exploitation
 - Buffer overflow
- System penetration
 - Web defacing
19.5.1 Cryptanalysis

- Cryptanalytic attacks
 - Attempt to decrypt ciphertext without possessing the decryption key
 - Most common attack
 - Encryption algorithm is analyzed to find relations between bits of the encryption key and bits of the ciphertext
 - Goal is to determine the key from the ciphertext
 - Weak statistical trends between ciphertext and keys can be exploited to gain knowledge about the key
- Covertly recovered key can be used to decrypt every message that uses the key

19.5.2 Viruses and Worms

- Virus
 - Executable code often sent as an attachment to an e-mail message or hidden in files such as audio clips, video clips and games
 - Attaches to or overwrites other files to replicate itself
 - Can corrupt files, control applications or even erase a hard drive
 - Can be spread across a network simply by sharing “infected” files embedded in e-mail attachments, documents or programs
- Worm
 - Executable code that spreads by infecting files over a network
 - Rarely requires any user action to propagate
 - Does not need to be attached to another program or file to spread
- Once a virus or worm is released, it can spread rapidly, often infecting millions of computers worldwide within minutes or hours
19.5.3 Denial-of-Service (DoS) Attacks

- **DoS attack**
 - Prevent a system from servicing legitimate requests
 - In many DoS attacks, unauthorized traffic saturates a network’s resources, restricting access for legitimate users
 - Typically, attack is performed by flooding servers with data packets
 - Usually require a network of computers to work simultaneously, although some skillful attacks can be achieved with a single machine
 - Can cause networked computers to crash or disconnect, disrupting service on a Web site or even disabling critical systems such as telecommunications or flight-control centers

19.5.4 Software Exploitation

- **Buffer overflow attacks**
 - Occurs when an application sends more data to a buffer than it can hold
 - Can push the additional data into adjacent buffers, corrupting or overwriting existing data
 - A well-designed buffer overflow attack can replace executable code in an application’s stack to alter its behavior
 - May contain malicious code that will then be able to execute with the same access rights as the application it attacked
 - Depending on the user and application, the attacker may gain access to the entire system
19.5.5 System Penetration

- System penetration
 - Successful breach of computer security by an unauthorized external user
 - Always potentially dangerous, although a quick response can usually thwart an intruder’s attack before any significant damage is done
 - Often occurs as a result of a Trojan horse, back-door program or an exploited bug in software or the operating system
 - Example
 - Web defacing
 - Crackers illegally obtain access to modify an organization’s Web site and change the contents

19.6 Attack Prevention and Security Solutions

- Firewalls
- Intrusion detection systems
- Antivirus software
- Security patches
- Secure file systems
19.6.1 Firewalls

- **Firewalls**
 - Protect a local area network (LAN) from intruders outside the network
 - Police inbound and outbound traffic for the LAN

- **Types of firewalls**
 - Packet-filtering firewall
 - Inspects packets for inconsistencies such as incorrect source address
 - Application-level gateways
 - Inspect packets for malicious payloads

19.6.2 Intrusion-Detection Systems (IDSs)

- **IDSs**
 - Monitor networks and application log files
 - Logs record information about system behavior, such as:
 - The time at which operating system services are requested
 - The name of the process that requests them
 - Examine log files to alert system administrators of suspicious application and/or system behavior
 - If an application exhibits erratic or malicious behavior, an IDS can halt the execution of that process

- **Host-based intrusion detection**
- **Network-based intrusion detection**
19.6.3 Antivirus Software

• Antivirus software
 – Attempts to protect a computer from a virus and/or identify and remove viruses on that computer
 – Various techniques used to detect and remove viruses from a system
 • None can offer complete protection

19.6.3 Antivirus Software

• Signature-scanning virus detection
 – Relies on knowledge about the structure of the computer virus’s code
 – Uses a known virus list
 • Can be particularly ineffective against variants and polymorphic viruses

• Heuristic scanning
 – Can prevent the spread of viruses by detecting and suspending any program exhibiting virus-like behavior:
 • Replication, residence in memory and/or destructive code
 – Primary strength: it can detect viruses that have not yet been identified
19.6.3 Antivirus Software

Figure 19.8 Polymorphic virus.

19.6.4 Security Patches

- Security patches
 - Code releases that address security flaws
 - Simply releasing a patch for a security flaw is insufficient to improve security
 - Developers should address security flaws by:
 - Notifying their users quickly
 - Providing software that facilitates the process of applying security patches
 - Example: Hotfixes
 - Microsoft Automatic Updates
19.6.5 Secure File Systems

- Secure file systems
 - Protect sensitive data regardless of how the data is accessed
- Encrypting File System (EFS)
 - Uses cryptography to protect files and folders in an NTFS file system
 - Uses secret-key and public-key encryption to secure files

19.6.6 Orange Book Security

- The Orange Book
 - Officially named “Department of Defense Trusted Computer System Evaluation Criteria”
 - Designed to evaluate the security features of operating systems
 - Define levels of security in operating systems
 - Classifies systems into four levels of security protection
 - A, B, C and D
 - The lowest level of security is D and the highest is A
19.7 Secure Communication

- Five fundamental requirements for a successful, secure transaction
 - Privacy
 - Ensuring that the information transmitted over the Internet has not been viewed by a third party
 - Integrity
 - Ensuring that the information sent or received has not been altered
 - Authentication
 - Verifying the identities of the sender and receiver
 - Authorization
 - Managing access to protected resources on the basis of user credentials
 - Nonrepudiation
 - Ensuring that the network will operate continuously

19.8 Key Agreement Protocols

- Public-key algorithms
 - Most often employed to exchange secret keys securely

- Key agreement protocol
 - The process by which two parties can exchange keys over an unsecure medium
 - Digital envelopes
 - Digital signatures (using the SHA-1 and MD5 hash algorithms)
19.8 Key Agreement Protocols

Figure 19.9 Creating a digital envelope.

19.8.1 Key Management

- Maintaining the secrecy of private keys is essential to the maintenance of cryptographic system security
- Most security breaches result from poor key management rather than cryptanalytic attacks
 - For example: The mishandling of private keys, resulting in key theft
19.8.1 Key Management

- **Key generation**
 - The process by which keys are created
 - Important to use a key-generation program that can generate a large number of keys as randomly as possible
 - Key security is improved when key length is large enough that brute-force cracking is computationally infeasible

19.8.2 Digital Signatures

- The electronic equivalents of written signatures
- Developed to address the absence of authentication and integrity in public-key cryptography
- Authenticate senders’ identities
- Difficult to forge
- Hash value uniquely identifies a message
 - Examples
 - Secure Hash Algorithm (SHA-1)
 - MD5 Message Digest Algorithm
 - Digital Signature Algorithm (DSA)
19.9 Public-Key Infrastructure Certificates and Certificate Authorities

- Limitation of public-key cryptography
 - Multiple users might share the same set of keys, making it difficult to establish each party’s identity

- Public Key Infrastructure (PKI)
 - Provides a solution by integrating public-key cryptography with digital certificates and certificate authorities to authenticate parties in a transaction

- Digital certificate
 - Digital document that identifies a user and is issued by a certificate authority (CA)

19.10 Secure Communication Protocols

- Developed to provide security in several layers of the traditional TCP/IP stack
- Secure Sockets Layer (SSL)
- Internet Protocol Security (IPSec)
19.10.1 Secure Sockets Layer (SSL)

- Nonproprietary protocol that secures communication between two computers on the Internet
- Implements public-key cryptography using the RSA algorithm and digital certificates
 - To authenticate the server in a transaction
 - To protect private information as it passes over the Internet
- SSL transactions do not require client authentication
 - Many servers consider a valid credit card number to be sufficient for authentication in secure purchases

19.10.2 Virtual Private Networks (VPNs) and IP Security (IPSec)

- Virtual Private Networks (VPNs)
 - Provide secure communications over public connections
 - Encryption enables VPNs to provide the same services and security as private networks
 - Created by establishing a secure communication channel over the Internet
- IPSec (Internet Protocol Security)
 - Uses public-key and symmetric-key cryptography
 - To ensure data integrity, authentication and confidentiality
 - Commonly used to implement a secure tunnel
19.10.3 Wireless Security

- **Wireless devices**
 - Limited bandwidth and processing power, high latency and unstable connections
 - Establishing secure wireless communication can be challenging
- **Wired Equivalent Privacy (WEP) protocol**
 - Protects wireless communication by encrypting transmitted data and preventing unauthorized access to the wireless network
 - Several drawbacks make it too weak for many environments
- **Wi-Fi Protected Access (WPA)**
 - Provides improved data encryption and enables user authentication, a feature not supported by WEP

19.11 Steganography

- **Steganography**
 - The practice of hiding information within other information
 - Can be used to hide a piece of information
 - For example: a message or image, within another image, message or other form of multimedia
- **Digital watermarks**
 - Used to protect intellectual property
 - Exploit unused portions of files to store hidden messages, while the digital files maintain their intended semantics
19.12 Proprietary and Open-Source Security

- Advantages of open-source security applications
 - Interoperability
 - Open-source applications tend to implement standards and protocols that many developers include in their products.
 - An application’s source code is available for extensive testing and debugging by the community at large

- Weaknesses of proprietary security
 - Nondisclosure
 - The number of collaborative users that can search for security flaws and contribute to the overall security of the application is limited

- Proprietary systems, however, can be equally as secure as open-source systems

19.13 Case Study: UNIX Security

- UNIX security
 - Encrypted password file
 - When a user enters a password, it is encrypted and compared to the password file
 - Passwords are unrecoverable even by the system administrator
 - UNIX setuid permission feature
 - Program is run with the privileges of the owner of the file, who may not be the user executing the files
 - This powerful feature has security flaws
 - Particularly when the owner is has “superuser” privileges (access to all files in a UNIX system)