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Objectives

• After reading this chapter, you should understand:
– hardware components that must be managed by an operating 

system.
– how hardware has evolved to support operating system 

functions.
– how to optimize performance of various hardware devices.
– the notion of an application programming interface (API).
– the process of compilation, linking and loading.
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2.1 Introduction

• An operating system is primarily a resource manager
– Design is tied to the hardware and software resources the 

operating system must manage
• processors
• memory
• secondary storage (such as hard disks)
• other I/O devices
• processes
• threads
• files
• databases
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2.2 Evolution of Hardware Devices

• Most operating systems are independent of hardware 
configurations
– Operating systems use device drivers to perform device-specific 

I/O operations
• For example, plug-and-play devices when connected instruct the 

operating system on which driver to use without user interaction
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2.2 Evolution of Hardware Devices

Figure 2.1 Transistor count plotted against time for Intel processors.
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2.3 Hardware Components

• A computer’s hardware consists of:
– processor(s)
– main memory
– input/output devices
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2.3.1 Mainboards

• Printed Circuit Board
– Hardware component that provides electrical connections 

between devices
– The mainboard is the central PCB in a system

• Devices such as processors and main memory are attached
• Include chips to perform low-level operations (e.g., BIOS)
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2.3.2 Processors

• A processor is hardware that executes machine-
language
– CPU executes the instructions of a program
– Coprocessor executes special-purpose instructions

• Ex., graphics or audio coprocessors
– Registers are high-speed memory located on processors

• Data must be in registers before a processor can operate on it
– Instruction length is the size of a machine-language instruction

• Some processors support multiple instruction lengths

 2004 Deitel & Associates, Inc.  All rights reserved.

Figure 2.2 Processor components.

2.3.2 Processors
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2.3.3 Clocks

• Computer time is measured in cycles
– One complete oscillation of an electrical signal
– Provided by system clock generator
– Processor speeds are measured in GHz (billions of cycles per 

second)
• Modern desktops execute at hundreds of megahertz or several GHz
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2.3.4 Memory Hierarchy

• The memory hierarchy is a scheme for categorizing 
memory
– Fastest and most expensive at the top, slowest and least 

expensive at the bottom
• Registers
• L1 Cache
• L2 Cache
• Main Memory
• Secondary and tertiary storage (CDs, DVDs and floppy disks)

– Main memory is the lowest data referenced directly by processor
• Volatile – loses its contents when the system loses power
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Figure 2.3 Memory hierarchy.

2.3.4 Memory Hierarchy
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2.3.5 Main Memory

• Main memory consists of volatile random access 
memory (RAM)
– Processes can access data locations in any order
– Common forms of RAM include:

• dynamic RAM (DRAM) – requires refresh circuit
• static RAM (SRAM) – does not require refresh circuit

– Bandwidth is the amount of data that can be transferred per unit
of time
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2.3.6 Secondary Storage

• Secondary storage stores large quantities of persistent data at 
low cost
– Accessing data on a hard disk is slower than main memory

• Mechanical movement of read/write head
• Rotational latency
• Transfer time

– Removable secondary storage facilitates data backup and transfer
• CDs (CD-R, CD-RW)
• DVDs (DVD-R, DVD+R)
• Zip disks
• Floppy disks
• Flash memory cards
• Tapes
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2.3.7 Buses

• A bus is a collection of traces
– Traces are thin electrical connections that transport information 

between hardware devices
– A port is a bus that connects exactly two devices
– An I/O channel is a bus shared by several devices to perform I/O

operations
• Handle I/O independently of the system’s main processors

– Example, the frontside bus (FSB) connects a processor to main 
memory
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2.3.8 Direct Memory Access (DMA)

• DMA improves data transfer between memory and I/O 
devices
– Devices and controllers transfer data to and from main memory 

directly
– Processor is free to execute software instructions
– DMA channel uses an I/O controller to manage data transfer

• Notifies processor when I/O operation is complete
– Improves performance in systems that perform large numbers of I/O 

operations (e.g., mainframes and servers)
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Figure 2.4 Direct memory access (DMA).

2.3.8 Direct Memory Access (DMA)
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2.3.9 Peripheral Devices

• Peripheral devices
– Any device not required for a computer to execute software 

instructions
– Internal devices are referred to as integrated peripheral devices

• Network interface cards, modems, sound cards
• Hard disk, CD and DVD drives

– Character devices transfer data one bit at a time
• Keyboards and mice

– Can be attached to a computer via ports and other buses
• Serial ports, parallel ports, USB, IEEE 1394 ports and SCSI
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Figure 2.5 Peripheral devices (1 of 2).

2.3.9 Peripheral Devices
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Figure 2.5 Peripheral devices (2 of 2).

2.3.9 Peripheral Devices
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2.4 Hardware Support for Operating Systems

• Computer architectures contain:
– Features that perform operating system functions quickly in 

hardware to improve performance
– Features that enable the operating system to rigidly enforce 

protection
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2.4.1 Processor

• A processor implements operating system protection 
mechanisms
– Prevents processes from accessing privileged instructions or memory
– Computer systems generally have several different execution modes:

• User mode (user state or problem state)
– User may execute only a subset of instructions

• Kernel mode (supervisor state)
– Processor may access privileged instructions and resources on 

behalf of processes
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2.4.1 Processor

• Memory protection and management
– Prevents processes from accessing memory that has not been 

assigned to them
– Implemented using processor registers modified only by privileged 

instructions

• Interrupts and Exceptions
– Most devices send a signal called an interrupt to the processor when 

an event occurs
– Exceptions are interrupts generated in response to errors
– The OS can respond to an interrupt by notifying processes that are 

waiting on such events
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2.4.2 Timers and Clocks

• Timers
– An interval timer periodically generates an interrupt
– Operating systems use interval timers to prevent processes from 

monopolizing the processor

• Clocks
– Provide a measure of continuity
– A time-of-day clock enables an OS to determine the current time 

and date
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2.4.3 Bootstrapping

• Bootstrapping: loading initial OS components into 
memory
– Performed by a computer’s Basic Input/Output System (BIOS)

• Initializes system hardware
• Loads instructions into main memory from a region of secondary 

storage called the boot sector
– If the system is not loaded, the user will be unable to access any 

of the computer’s hardware
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Figure 2.6 Bootstrapping.

2.4.3 Bootstrapping
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2.4.4 Plug and Play

• Plug and Play technology
– Allows operating systems to configure newly installed hardware 

without user interaction
– To support plug and play, a hardware device must:

• Uniquely identify itself to the operating system
• Communicate with the OS to indicate the resources and services the 

device requires to function properly
• Identify the driver that supports the device and allows software to 

configure the device (e.g., assign the device to a DMA channel)
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2.5 Caching and Buffering

• Caches
– Relatively fast memory
– Maintain copies of data that will be accessed soon
– Increase program execution speed
– Examples include:

• L1 and L2 processor caches
• Main memory can be viewed as a cache for hard disks and other 

secondary storage devices
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2.5 Caching and Buffering

• Buffers
– Temporary storage area that holds data during I/O transfers
– Primarily used to:

• Coordinate communications between devices operating at different
speeds

• Store data for asynchronous processing
• Allow signals to be delivered asynchronously

• Spooling
– Buffering technique in which an intermediate device, such as a 

disk, is interposed between a process and a low-speed I/O device
– Allows processes to request operations from a peripheral device 

without requiring that the device be ready to service the request
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2.6 Software Overview

• Programming languages
– Some are directly understandable by computers, others require 

translation
– Classified generally as either:

• Machine language
• Assembly language
• High-level language
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2.6.1 Machine Language and Assembly Language

• Machine language
– Defined by the computer’s hardware design
– Consists of streams of numbers (1s and 0s) that instruct 

computers how to perform elementary operations
– A computer can understand only its own machine language

• Assembly language
– Represents machine-language instructions using English-like 

abbreviations
– Assemblers convert assembly language to machine language
– Speeds programming, reduces potential for bugs
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2.6.2 Interpreters and Compilers

• High-level languages
– Instructions look similar to everyday English
– Accomplish more substantial tasks with fewer statements
– Require compilers and interpreters

• Compiler
– Translator program that converts high-level language programs 

into machine language

• Interpreter
– Program that directly executes source code or code that has been

reduced to a low-level language that is not machine code
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2.6.3 High-level languages

• Popular high-level languages
– Typically are procedural or object-oriented
– Fortran

• Used for scientific and engineering applications
– COBOL

• For business applications that manipulate large volumes of data
– C

• Development language of the UNIX OS
– C++/Java

• Popular object-oriented languages
– C#

• Object-oriented development language for the .NET platform
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2.6.4 Structured programming

• Disciplined approach to creating programs
– Programs are clear, provably correct and easy to modify
– Structured programming languages include:

• Pascal
– Designed for teaching structured programming

• Ada
– Developed by the US Department of Defense

• Fortran
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2.6.5 Object-Oriented Programming

• Objects
– Reusable software unit (any noun can be represented) 
– Easy to modify and understand
– Have properties (e.g., color) and perform actions (e.g., moving)

• Classes
– Types of related objects
– Specify the general format of an object and the properties and 

actions available to it

• Object-oriented programming
– Focuses on behaviors and interactions, not implementation
– C++, Java and C# are popular object-oriented languages
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2.7 Application Programming Interfaces (APIs)

• A set of routines
– Programmers use routines to request services from the operating 

system
– Programs call API functions, which may access the OS by 

making system calls
– Examples of APIs include:

• Portable Operating System Interface (POSIX) standard
• Windows API
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Figure 2.7 Application programming interface (API).

2.7 Application Programming Interfaces (APIs)
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2.8 Compiling, Linking and Loading

• Before a high-level-language program can execute, it 
must be:
– Translated into machine language
– Linked with various other machine-language programs on which 

it depends
– Loaded into memory
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2.8.1 Compiling

• Translating high-level code to machine code
– Accepts source code as input and returns object code
– Compilation phases include:

• Lexer
– Separates the characters of a program’s source into tokens

• Parser
– Groups tokens into syntactically correct statements

• Intermediate code generator
– Converts statements into a stream of simple instructions

• Optimizer
– Improves code execution efficiency and memory requirements

• Code generator
– Produces the object file containing the machine-language
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Figure 2.8 Compiler phases.

2.8.1 Compiling
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2.8.2 Linking

• Linkers 
– Create a single executable unit
– Integrate precompiled modules called libraries referenced by a 

program
– Assign relative addresses to different program or data units
– Resolve all external references between subprograms
– Produce an integrated module called a load module
– Linking can be performed at compile time, before loading, at 

load time or at runtime
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Figure 2.9 Object module.

2.8.2 Linking
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Figure 2.10 Linking process.

2.8.2 Linking
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Figure 2.11 Symbol resolution.

2.8.2 Linking

 2004 Deitel & Associates, Inc.  All rights reserved.

2.8.3 Loading

• Loaders
– Convert relative addresses to physical addresses
– Place each instruction and data unit in main memory

• Techniques for loading a program into memory
– Absolute loading

• Place program at the addresses specified by programmer or 
compiler (assuming addresses are available)

– Relocatable loading 
• Relocate the program’s addresses to correspond to its actual 

location in memory
– Dynamic loading

• Load program modules upon first use
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Figure 2.12 Loading.

2.8.3 Loading
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Figure 2.13 Compiling, linking and loading.

2.8.3 Loading
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2.9 Firmware

• Firmware contains executable instructions stored in 
persistent memory attached to a device
– Programmed with microprogramming

• Layer of programming below a computer’s machine-language
• Microcode

– Simple, fundamental instruction necessary to implement all 
machine-language operations

 2004 Deitel & Associates, Inc.  All rights reserved.

2.10 Middleware

• Middleware is software for distributed systems
– Enables interactions among multiple processes running on one or 

more computers across a network
– Facilitates heterogeneous distributed systems
– Simplifies application programming
– Example, Open DataBase Connectivity (ODBC)

• Permits applications to access databases through middleware called 
an ODBC driver


