
1

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 2 – Hardware and Software Concepts

Outline
2.1 Introduction
2.2 Evolution of Hardware Devices
2.3 Hardware Components
2.3.1 Mainboards
2.3.2 Processors
2.3.3 Clocks
2.3.4 Memory Hierarchy
2.3.5 Main Memory
2.3.6 Secondary Storage
2.3.7 Buses
2.3.8 Direct Memory Access (DMA)
2.3.9 Peripheral Devices
2.4 Hardware Support for Operating Systems
2.4.1 Processor
2.4.2 Timers and Clocks

 2004 Deitel & Associates, Inc. All rights reserved.

Chapter 2 – Hardware and Software Concepts

Outline (continued)
2.4.3 Bootstrapping
2.4.4 Plug and Play
2.5 Caching and Buffering
2.6 Software overview
2.6.1 Machine Language and Assembly Language
2.6.2 Interpreters and Compilers
2.6.3 High-Level Languages
2.6.4 Structured Programming
2.6.5 Object-Oriented Programming
2.7 Application Programming Interfaces (APIs)
2.8 Compiling, Linking and Loading
2.8.1 Compiling
2.8.2 Linking
2.8.3 Loading
2.9 Firmware
2.10 Middleware

2

 2004 Deitel & Associates, Inc. All rights reserved.

Objectives

• After reading this chapter, you should understand:
– hardware components that must be managed by an operating

system.
– how hardware has evolved to support operating system

functions.
– how to optimize performance of various hardware devices.
– the notion of an application programming interface (API).
– the process of compilation, linking and loading.

 2004 Deitel & Associates, Inc. All rights reserved.

2.1 Introduction

• An operating system is primarily a resource manager
– Design is tied to the hardware and software resources the

operating system must manage
• processors
• memory
• secondary storage (such as hard disks)
• other I/O devices
• processes
• threads
• files
• databases

3

 2004 Deitel & Associates, Inc. All rights reserved.

2.2 Evolution of Hardware Devices

• Most operating systems are independent of hardware
configurations
– Operating systems use device drivers to perform device-specific

I/O operations
• For example, plug-and-play devices when connected instruct the

operating system on which driver to use without user interaction

 2004 Deitel & Associates, Inc. All rights reserved.

2.2 Evolution of Hardware Devices

Figure 2.1 Transistor count plotted against time for Intel processors.

4

 2004 Deitel & Associates, Inc. All rights reserved.

2.3 Hardware Components

• A computer’s hardware consists of:
– processor(s)
– main memory
– input/output devices

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.1 Mainboards

• Printed Circuit Board
– Hardware component that provides electrical connections

between devices
– The mainboard is the central PCB in a system

• Devices such as processors and main memory are attached
• Include chips to perform low-level operations (e.g., BIOS)

5

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.2 Processors

• A processor is hardware that executes machine-
language
– CPU executes the instructions of a program
– Coprocessor executes special-purpose instructions

• Ex., graphics or audio coprocessors
– Registers are high-speed memory located on processors

• Data must be in registers before a processor can operate on it
– Instruction length is the size of a machine-language instruction

• Some processors support multiple instruction lengths

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.2 Processor components.

2.3.2 Processors

6

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.3 Clocks

• Computer time is measured in cycles
– One complete oscillation of an electrical signal
– Provided by system clock generator
– Processor speeds are measured in GHz (billions of cycles per

second)
• Modern desktops execute at hundreds of megahertz or several GHz

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.4 Memory Hierarchy

• The memory hierarchy is a scheme for categorizing
memory
– Fastest and most expensive at the top, slowest and least

expensive at the bottom
• Registers
• L1 Cache
• L2 Cache
• Main Memory
• Secondary and tertiary storage (CDs, DVDs and floppy disks)

– Main memory is the lowest data referenced directly by processor
• Volatile – loses its contents when the system loses power

7

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.3 Memory hierarchy.

2.3.4 Memory Hierarchy

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.5 Main Memory

• Main memory consists of volatile random access
memory (RAM)
– Processes can access data locations in any order
– Common forms of RAM include:

• dynamic RAM (DRAM) – requires refresh circuit
• static RAM (SRAM) – does not require refresh circuit

– Bandwidth is the amount of data that can be transferred per unit
of time

8

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.6 Secondary Storage

• Secondary storage stores large quantities of persistent data at
low cost
– Accessing data on a hard disk is slower than main memory

• Mechanical movement of read/write head
• Rotational latency
• Transfer time

– Removable secondary storage facilitates data backup and transfer
• CDs (CD-R, CD-RW)
• DVDs (DVD-R, DVD+R)
• Zip disks
• Floppy disks
• Flash memory cards
• Tapes

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.7 Buses

• A bus is a collection of traces
– Traces are thin electrical connections that transport information

between hardware devices
– A port is a bus that connects exactly two devices
– An I/O channel is a bus shared by several devices to perform I/O

operations
• Handle I/O independently of the system’s main processors

– Example, the frontside bus (FSB) connects a processor to main
memory

9

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.8 Direct Memory Access (DMA)

• DMA improves data transfer between memory and I/O
devices
– Devices and controllers transfer data to and from main memory

directly
– Processor is free to execute software instructions
– DMA channel uses an I/O controller to manage data transfer

• Notifies processor when I/O operation is complete
– Improves performance in systems that perform large numbers of I/O

operations (e.g., mainframes and servers)

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.4 Direct memory access (DMA).

2.3.8 Direct Memory Access (DMA)

10

 2004 Deitel & Associates, Inc. All rights reserved.

2.3.9 Peripheral Devices

• Peripheral devices
– Any device not required for a computer to execute software

instructions
– Internal devices are referred to as integrated peripheral devices

• Network interface cards, modems, sound cards
• Hard disk, CD and DVD drives

– Character devices transfer data one bit at a time
• Keyboards and mice

– Can be attached to a computer via ports and other buses
• Serial ports, parallel ports, USB, IEEE 1394 ports and SCSI

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.5 Peripheral devices (1 of 2).

2.3.9 Peripheral Devices

11

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.5 Peripheral devices (2 of 2).

2.3.9 Peripheral Devices

 2004 Deitel & Associates, Inc. All rights reserved.

2.4 Hardware Support for Operating Systems

• Computer architectures contain:
– Features that perform operating system functions quickly in

hardware to improve performance
– Features that enable the operating system to rigidly enforce

protection

12

 2004 Deitel & Associates, Inc. All rights reserved.

2.4.1 Processor

• A processor implements operating system protection
mechanisms
– Prevents processes from accessing privileged instructions or memory
– Computer systems generally have several different execution modes:

• User mode (user state or problem state)
– User may execute only a subset of instructions

• Kernel mode (supervisor state)
– Processor may access privileged instructions and resources on

behalf of processes

 2004 Deitel & Associates, Inc. All rights reserved.

2.4.1 Processor

• Memory protection and management
– Prevents processes from accessing memory that has not been

assigned to them
– Implemented using processor registers modified only by privileged

instructions

• Interrupts and Exceptions
– Most devices send a signal called an interrupt to the processor when

an event occurs
– Exceptions are interrupts generated in response to errors
– The OS can respond to an interrupt by notifying processes that are

waiting on such events

13

 2004 Deitel & Associates, Inc. All rights reserved.

2.4.2 Timers and Clocks

• Timers
– An interval timer periodically generates an interrupt
– Operating systems use interval timers to prevent processes from

monopolizing the processor

• Clocks
– Provide a measure of continuity
– A time-of-day clock enables an OS to determine the current time

and date

 2004 Deitel & Associates, Inc. All rights reserved.

2.4.3 Bootstrapping

• Bootstrapping: loading initial OS components into
memory
– Performed by a computer’s Basic Input/Output System (BIOS)

• Initializes system hardware
• Loads instructions into main memory from a region of secondary

storage called the boot sector
– If the system is not loaded, the user will be unable to access any

of the computer’s hardware

14

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.6 Bootstrapping.

2.4.3 Bootstrapping

 2004 Deitel & Associates, Inc. All rights reserved.

2.4.4 Plug and Play

• Plug and Play technology
– Allows operating systems to configure newly installed hardware

without user interaction
– To support plug and play, a hardware device must:

• Uniquely identify itself to the operating system
• Communicate with the OS to indicate the resources and services the

device requires to function properly
• Identify the driver that supports the device and allows software to

configure the device (e.g., assign the device to a DMA channel)

15

 2004 Deitel & Associates, Inc. All rights reserved.

2.5 Caching and Buffering

• Caches
– Relatively fast memory
– Maintain copies of data that will be accessed soon
– Increase program execution speed
– Examples include:

• L1 and L2 processor caches
• Main memory can be viewed as a cache for hard disks and other

secondary storage devices

 2004 Deitel & Associates, Inc. All rights reserved.

2.5 Caching and Buffering

• Buffers
– Temporary storage area that holds data during I/O transfers
– Primarily used to:

• Coordinate communications between devices operating at different
speeds

• Store data for asynchronous processing
• Allow signals to be delivered asynchronously

• Spooling
– Buffering technique in which an intermediate device, such as a

disk, is interposed between a process and a low-speed I/O device
– Allows processes to request operations from a peripheral device

without requiring that the device be ready to service the request

16

 2004 Deitel & Associates, Inc. All rights reserved.

2.6 Software Overview

• Programming languages
– Some are directly understandable by computers, others require

translation
– Classified generally as either:

• Machine language
• Assembly language
• High-level language

 2004 Deitel & Associates, Inc. All rights reserved.

2.6.1 Machine Language and Assembly Language

• Machine language
– Defined by the computer’s hardware design
– Consists of streams of numbers (1s and 0s) that instruct

computers how to perform elementary operations
– A computer can understand only its own machine language

• Assembly language
– Represents machine-language instructions using English-like

abbreviations
– Assemblers convert assembly language to machine language
– Speeds programming, reduces potential for bugs

17

 2004 Deitel & Associates, Inc. All rights reserved.

2.6.2 Interpreters and Compilers

• High-level languages
– Instructions look similar to everyday English
– Accomplish more substantial tasks with fewer statements
– Require compilers and interpreters

• Compiler
– Translator program that converts high-level language programs

into machine language

• Interpreter
– Program that directly executes source code or code that has been

reduced to a low-level language that is not machine code

 2004 Deitel & Associates, Inc. All rights reserved.

2.6.3 High-level languages

• Popular high-level languages
– Typically are procedural or object-oriented
– Fortran

• Used for scientific and engineering applications
– COBOL

• For business applications that manipulate large volumes of data
– C

• Development language of the UNIX OS
– C++/Java

• Popular object-oriented languages
– C#

• Object-oriented development language for the .NET platform

18

 2004 Deitel & Associates, Inc. All rights reserved.

2.6.4 Structured programming

• Disciplined approach to creating programs
– Programs are clear, provably correct and easy to modify
– Structured programming languages include:

• Pascal
– Designed for teaching structured programming

• Ada
– Developed by the US Department of Defense

• Fortran

 2004 Deitel & Associates, Inc. All rights reserved.

2.6.5 Object-Oriented Programming

• Objects
– Reusable software unit (any noun can be represented)
– Easy to modify and understand
– Have properties (e.g., color) and perform actions (e.g., moving)

• Classes
– Types of related objects
– Specify the general format of an object and the properties and

actions available to it

• Object-oriented programming
– Focuses on behaviors and interactions, not implementation
– C++, Java and C# are popular object-oriented languages

19

 2004 Deitel & Associates, Inc. All rights reserved.

2.7 Application Programming Interfaces (APIs)

• A set of routines
– Programmers use routines to request services from the operating

system
– Programs call API functions, which may access the OS by

making system calls
– Examples of APIs include:

• Portable Operating System Interface (POSIX) standard
• Windows API

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.7 Application programming interface (API).

2.7 Application Programming Interfaces (APIs)

20

 2004 Deitel & Associates, Inc. All rights reserved.

2.8 Compiling, Linking and Loading

• Before a high-level-language program can execute, it
must be:
– Translated into machine language
– Linked with various other machine-language programs on which

it depends
– Loaded into memory

 2004 Deitel & Associates, Inc. All rights reserved.

2.8.1 Compiling

• Translating high-level code to machine code
– Accepts source code as input and returns object code
– Compilation phases include:

• Lexer
– Separates the characters of a program’s source into tokens

• Parser
– Groups tokens into syntactically correct statements

• Intermediate code generator
– Converts statements into a stream of simple instructions

• Optimizer
– Improves code execution efficiency and memory requirements

• Code generator
– Produces the object file containing the machine-language

21

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.8 Compiler phases.

2.8.1 Compiling

 2004 Deitel & Associates, Inc. All rights reserved.

2.8.2 Linking

• Linkers
– Create a single executable unit
– Integrate precompiled modules called libraries referenced by a

program
– Assign relative addresses to different program or data units
– Resolve all external references between subprograms
– Produce an integrated module called a load module
– Linking can be performed at compile time, before loading, at

load time or at runtime

22

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.9 Object module.

2.8.2 Linking

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.10 Linking process.

2.8.2 Linking

23

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.11 Symbol resolution.

2.8.2 Linking

 2004 Deitel & Associates, Inc. All rights reserved.

2.8.3 Loading

• Loaders
– Convert relative addresses to physical addresses
– Place each instruction and data unit in main memory

• Techniques for loading a program into memory
– Absolute loading

• Place program at the addresses specified by programmer or
compiler (assuming addresses are available)

– Relocatable loading
• Relocate the program’s addresses to correspond to its actual

location in memory
– Dynamic loading

• Load program modules upon first use

24

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.12 Loading.

2.8.3 Loading

 2004 Deitel & Associates, Inc. All rights reserved.

Figure 2.13 Compiling, linking and loading.

2.8.3 Loading

25

 2004 Deitel & Associates, Inc. All rights reserved.

2.9 Firmware

• Firmware contains executable instructions stored in
persistent memory attached to a device
– Programmed with microprogramming

• Layer of programming below a computer’s machine-language
• Microcode

– Simple, fundamental instruction necessary to implement all
machine-language operations

 2004 Deitel & Associates, Inc. All rights reserved.

2.10 Middleware

• Middleware is software for distributed systems
– Enables interactions among multiple processes running on one or

more computers across a network
– Facilitates heterogeneous distributed systems
– Simplifies application programming
– Example, Open DataBase Connectivity (ODBC)

• Permits applications to access databases through middleware called
an ODBC driver

