
Chapter 8

Basic Synchronization Principles

CS 3204 - Arthur 2

Multiprogramming
Multiple concurrent, independent processes
Those processes might want to coordinate activities

Clearly, synchronization is needed if
A wants B to read x after it writes it & before it re-writes

Proc A {
while (true) {

<compute A1>
write(x)
<compute A2>
read(y)
}

}

Proc B {
while (true) {

read(x)
<compute B1>
write(y)
<compute B2>
}

}

Need for Synchronization

shared x, y

CS 3204 - Arthur 3

Barriers to providing synchronization

What are the barriers to providing good
synchronization capabilities ?

No widely accepted parallel programming languages
CSP
Linda

No widely used paradigm
How do you decompose a problem ?

OS only provides minimal support
Test and Set
Semaphore
Monitor

CS 3204 - Arthur 4

Critical Section Problem

/* Code schema for p1 */

..

balance = balance + amount;

..

/* Code schema for p2 */

..

balance = balance - amount;

..

/* Schema for p1 */

/* X == balance */

load R1, X

load R2, Y

add R1, R2

store R1, X

/* Schema for p2 */

/* X == balance */

load R1, X

load R2, Y

sub R1, R2

store R1, X

shared float balance;

CS 3204 - Arthur 5

Critical Section Problem…

Suppose:
Execution sequence : 1, 2, 3

Lost update : 2

Execution sequence : 1, 4, 3 ,6
Lost update : 3

Together => non-determinacy
Race condition exists

/* Schema for p1 */

load R1, X

load R2, Y

add R1, R2

store R1, X

1

3
5

/* Schema for p2 */

load R1, X

load R2, Y

sub R1, R2

store R1, X
6

4
2

CS 3204 - Arthur 6

Using Shared Global Variables – Ver 1

procedure processone;

begin
while true do

begin
while processnum == 2 do;
criticalsectionone;
processnumber := 2;

otherstuffone;

end
end

procedure processtwo;

begin
while true do

begin
while processnum == 1 do;
criticalsectiontwo;
processnumber := 1;

otherstufftwo;

end
end

Single global variable forces lockstep synchronization

Hard wait

Hard wait

Shared integer: processnumber <= 1;

CS 3204 - Arthur 7

Using Shared Global Variables – Ver 2

procedure processone;

begin
while true do

begin
while p2inside do;
p1inside := true;

criticalsectionone;

p1inside := false;

otherstuffone;

end
end

procedure processtwo;

begin
while true do

begin
while p1inside do;
p2inside := true;

criticalsectiontwo;

p2inside := false;

otherstufftwo;

end
end

• Process 1 & 2 can both be in the critical sections at the same time
Because Test & Set operations are not atomic

==> Move setting of p1inside/p2inside before test

Shared boolean: p1inside <= false, p2inside <= false;

CS 3204 - Arthur 8

Using Shared Global Variables – Ver 3

procedure processone;

begin
while true do

begin
p1wantsin := true;

while p2wantsin do;
criticalsectionone;

p1wantsin := false;

otherstuffone;

end
end

procedure processtwo;

begin
while true do

begin
p2wantsin := true;

while p1wantsin do;
criticalsectiontwo;
p2wantsin := false;

otherstufftwo;

end
end

• Deadlock can occur if both sets flag at the same time

==> Need a way to break out of loops…..

Shared boolean: p1wantsin <= false, p2wantsin <= false;

CS 3204 - Arthur 9

Wherein Lies the Problem?

Problem stems from interruption of software-based
process while executing critical code (low-level)
Solution

Identify critical section
Disable interrupts while in Critical Section

/* Program for P2 */
DisableInterrupts();

Balance = balance - amount;

EnableInterrupts();

CS

/* Program for P1 */
DisableInterrupts();

balance = balance + amount;

EnableInterrupts();

CS

shared double balance;

CS 3204 - Arthur 10

Using Interrupts…

This works BUT…
Allows process to disable interrupts for arbitrarily long time

What if I/O interrupt needed ?

What if one of the processes is in infinite loop inside the
Critical Section

Let’s examine the use of Shared Variables again….

CS 3204 - Arthur 11

Using Shared Variable to Synchronize

/* Program for P1 */
..

/* Acquire lock */

while(lock) {NULL;};

lock = TRUE;

/* Execute critical section */

balance = balance + amount;

/* Release lock */

lock = FALSE;

..

/* Program for P2 */
..

/* Acquire lock */

while(lock) {NULL;};

lock = TRUE;

/* Execute critical section */

balance = balance - amount;

/* Release lock */

lock = FALSE;

..

shared boolean lock <= FALSE;

shared float balance;

lock == FALSE
=> No process in CS
=> Any process can enter CS

lock == TRUE
=> One process in CS
=> No other process admitted to CS

CS 3204 - Arthur 12

Synchronizing Variable…

What if P1 interrupted after lock Set to TRUE
=> P2 cannot execute past while does hard wait

=> Wasted CPU time

What if P1 interrupted after Test, before Set
=> P1 & P2 can be in the CS at the same time !!!

Wasted CPU time is bad, but tolerable…..
Critical Section Violation cannot be tolerated
==> Need Un-interruptable “Test & Set” operation

CS 3204 - Arthur 13

Un-interruptable Test & Set

enter(lock) {

disableInterrupts();

/* Loop until lock TRUE */

while (lock) {

/* Let interrupts occur */

enableInterrupts();

disableInterrupts();

}

lock = TRUE;

enableInterrupts();

}

exit(lock) {

disableInterrupts();

lock = FALSE;

enableInterrupts();

}

Enable interrupts so that
the OS, I/O can use them

Re-disable interrupts when
ready to test again

CS 3204 - Arthur 14

Un-interruptable Test & Set…

Note
CS is totally bounded by enter/exit
P2 can still wait (waisted CPU cycles) if P1 is interupted after
setting lock (i.e., entering critical section), but
Mutual exclusion is achieved!!!!!

Does not generalize to multi-processing

P1
enter(lock);

balance = balance + amount;

exit(lock);

P2
enter(lock);

balance = balance - amount;

exit(lock);

CSCS

Solution

CS 3204 - Arthur 15

Protecting Multiple Components

/* Program for P1 */
enter(listLK);

<delete element>;
exit(listLK);

<intermediate comp.>;

enter(lngthLK);
<update length>;

exit(lngthLK);

Use enter/exit to update structure with 2 pieces if information
But try to minimize time component locked out

Shared: list L,
boolean ListLK <= False;
boolean LngthLK <= False;

/* Program for P2 */
enter(lngthLK);

<update length>;
exit(lngthLK);

<intermediate comp.>;

enter(listLK);
<delete element>;

exit(listLK);

CS 3204 - Arthur 16

/* Program for P1 */
enter(listLK);

<delete element>;
exit(listLK);

<intermediate comp.>;

enter(lngthLK);
<update length>;

exit(lngthLK);

Suppose: P1... ; P2 runs & finishes; P1 …….
Any access to lngth vble during “intermediate comp.” will be incorrect !!!
=> Programming Error: List and variable need to be updated together

Protecting Multiple Components: 1st try
Shared: list L,

boolean ListLK <= False;
boolean LngthLK <= False;

/* Program for P2 */
enter(lngthLK);

<update length>;
exit(lngthLK);

<intermediate comp.>;

enter(listLK);
<delete element>;

exit(listLK);

CS 3204 - Arthur 17

Suppose: P1... ;
P2 runs to ⊗ and blocks ;

P1 starts & blocks on “enter”

=> DEADLOCK

/* Program for P1 */
enter(listLK);

<delete element>;
<intermediate comp.>;

enter(lngthLK);
<update length>;

exit(listLK);
exit(lngthLK);

Protecting Multiple Components: 2nd try
Shared: list L,

boolean ListLK <= False;
boolean LngthLK <= False;

/* Program for P2 */
enter(lngthLK);

<update length>;

<intermediate comp.>;

enter(listLK)
<delete element>;

exit(lngthLK);
exit(listLK);

CS1

CS2

CS2

CS1

⊗

CS 3204 - Arthur 18

Deadlock

Deadlock
When 2 or more processes get into a state whereby each is
holding a resource requested by the other

P1 requests and gets R1
interrupt
P2 requests and gets R2
interrupt
P1 requests R2 and blocks
P2 requests R1 and blocks

R1

R2

P1 P2

P1
.
Request Resource1
.
Request Resource2
.

P2
.
Request Resource2
.
Request Resource1
.

CS 3204 - Arthur 19

Solution to Synchronization

The previous examples have illustrated 2 methods for
synchronizing / coordinating processes

Interrupt
Shared variable

Each has its own set of problems
Interrupt

May be disabled for too long
Shared variable

Test, then set – interruptable
Non-interruptable – gets complex

Dijkstra introduces a 3rd and much more preferable
method

Semaphore

CS 3204 - Arthur 20

Semaphore

Dijkstra, 1965

Synchronization primitive with no busy waiting

It is an integer variable changed or tested by one of
the two indivisible operations

Actually implemented as a protected variable type
var x : semaphore

CS 3204 - Arthur 21

Semaphore operations

P operation (“wait”)
Requests permission to use a critical resource

S := S – 1;
if (S < 0) then

put calling process on queue

V operation (“signal”)
Releases the critical resource

S := S + 1;
if (S <= 0) then

remove one process from queue

Queues are associated with each semaphore variable

CS 3204 - Arthur 22

Semaphore : Example

Critical resource T

Semaphore S initial_value

Processes A,B

Process B

.

P(S);

<CS> /* access T */
V(S);

.

Process A

.

P(S);

<CS> /* access T */
V(S);

.

CS 3204 - Arthur 23

Semaphore : Example…

var S : semaphore 1

Queue associated with S

Value of S : 1

Process A

P(S);

<CS>
V(S);

Process B

P(S);

<CS>
V(S);

Process C

P(S);

<CS>
V(S);

CS 3204 - Arthur 24

Types of Semaphores

Binary Semaphores
Maximum value is 1

Counting Semaphores
Maximum value is greater than 1

Both use same P and V definitions

Synchronizing code and initialization determines what
values are needed, and therefore, what kind of
semaphore will be used

CS 3204 - Arthur 25

(1) P1 => P(mutex)
Decrements; <0 ?; NO (0);
P1 Enters CS;
P1 interrupted

(2) P2 => P(mutex)
Decrements; <0 ?; YES (-1)
P2 blocks on mutex

Using Semaphores

proc_1() {
while(true) {

<compute section>;

P(mutex);
<critical section>;

V(mutex);
}

}

proc_2() {
while(true) {

<compute section>;

P(mutex);
<critical section>;

V(mutex);
}

}

Shared semaphore mutex <= 1;

(3) P1 finishes CS work
P1 => V(mutex);

Increments; <=0 ?; YES (0)
P2 woken & proceeds

Non-Interruptable “Test & Sets”

CS 3204 - Arthur 26

Using Semaphores - Example 1

proc_0() {
...

P(mutex);

balance = balance + amount;
V(mutex);

...

}

proc_1() {
…

P(mutex);

balance = balance - amount;
V(mutex);

...

}

Shared semaphore mutex <= 1;

Note: Could use Interrupts to implement solution,
But (1) with interrupts masked off, what happens if

a prior I/O request is satisfied
(2) Interrupt approach would not work on Multiprocessor

Suppose P1 issues P(mutex) first ……

Suppose P2 issues P(mutex) first ……
No Problem

CS 3204 - Arthur 27

Using Semaphores – Example 2

Cannot use Interrupt disable/enable here because we have multiple
distinct synchronization points
Interrupt disable/enable can only distinguish 1 synchronization event
Therefore, 2 Semaphores

proc_B() {
while(true) {

P(s1);

read(x);
<compute B1>;

write(y);

V(s2);

<compute B2>;
}

}

B blocks
till A signals

B signals A
that “write to
y” has
completed

proc_A() {
while(true) {

<compute A1>;

write(x);
V(s1);

<compute A2>;

P(s2);

read(y);
}

}

A blocks
until B signals

A signals B
that “write to
x” has
completed

Shared semaphore: s1 <= 0, s2 <= 0; Note: values started at 0… ok?

CS 3204 - Arthur 28

Using Hardware Test & Set [TS(s)] to
Implement Binary Semaphore “Semantics”

boolean s = FALSE;

...

while(TS(s));

<critical section>

S = FALSE;

...

TS(s)
Test s
Set s to True
Return original value

Note: No actual queueing, each process just “hard waits”

semaphore s = 1;

...

P(s);

<critical section>

V(s);

...

Uninterruptable

≡
?

CS 3204 - Arthur 29

Counting Semaphores

Most of our examples have only required Binary
Semaphore

Only 0 or 1 values

But synchronization problems arise that require a
more general form of semaphores

Use counting semaphores
Values : non-negative integers

CS 3204 - Arthur 30

Classical Problems

Producer / Consumer Problem

Readers – Writers Problem

CS 3204 - Arthur 31

Producer / Consumer Problem (Classic)

Critical resource
Set of message buffers

2 Processes
Producer : Creates a message and places it in the buffer
Consumer : Reads a message and deletes it from the buffer

Objective
Allow the producer and consumer to run concurrently

CS 3204 - Arthur 32

P/C…

Constraints
Producer must have a non-full buffer to put its message into
Consumer must have a non-empty buffer to read
Mutually exclusive access to Buffer pool

Unbounded Buffer problem
Infinite buffers
Producer never has to wait
Not interesting nor practical

Bounded Buffer Problem
Limited set of buffers

CS 3204 - Arthur 33

P/C - Solution

Shared Full: semaphore 0;

Empty semaphore MaxBuffers;

MEPC: semaphore 1;

Begin

...

P(Empty);

P(MEPC);

<add item to buffer>

V(MEPC);

V(Full);

...

End;

Begin

...

P(Full);

P(MEPC);

<remove item from buffer>

V(MEPC);

V(Empty);

...

End;

Producer Consumer

X

X

XX

CS 3204 - Arthur 34

P/C – Another Look

Producer

Consumer

Pool of empty
Baskets

Pool full of Baskets

CS 3204 - Arthur 35

P/C – Another Look

9 Baskets – Bounded

Consumer – Empties basket
Can only remove basket from Full Pool, if one is there
=> Need “full” count
Emptys basket and places it in Empty pool

Producer – Fills basket
Can only remove basket from Empty pool, if one is there
=> Need “empty” count
Fills basket and places it in Full pool

CS 3204 - Arthur 36

P/C - Another Look

producer() {

buf_type *next, *here;

while(True) {

produce_item(next);

P(empty); /*Claim empty buffer*/

P(Emutex); /*Manipulate the pool*/

here = obtain(empty);

V(Emutex);

copy_buffer(next, here);

P(Fmutex); /*Manipulate the pool*/

release(here, fullpool);

V(Fmutex); /*Signal full buffer*/

V(full);

}

}

consumer() {

buf_type *next, *here;

while(True) {

P(full); /*Claim full buffer*/

P(Fmutex); /*Manipulate the pool*/

here = obtain(full);

V(Fmutex);

copy_buffer(here, next);

P(Emutex); /*Manipulate the pool*/

release(here, emptypool);

V(Enmutex); /*Signal empty buffer*/

V(empty);

consume_item(next);

}

}

Shared semaphore: Emutex = 1, Fmutex = 1; full = 0, empty = 9;

Shared buf_type: buffer[9];

CS 3204 - Arthur 37

P/C - Example

How realistic is PCP
scenario?
Consider a circular buffer

12 slots
Producer points at next one it
will fill
Consumer points at next one it
will empty

Producer

Consumer

Don’t want :
Producer = Consumer
=> (1) Consumer “consumed” faster than

producer “produced”, or
(2) Producer “produced” faster than

consumer “consumed”.

Do we need to

synchronize

access to buffer?

CS 3204 - Arthur 38

P/C – Real World Scenario

CPU can produce data faster than terminal can
accept or viewer can read

TerminalCPU

Communication buffers in both

Xon/Xoff Flow Control

CS 3204 - Arthur 39

Readers / Writers Problem (Classic)

Multiple readers of the same file?
No problem

Multiple writers to the same file?
Might be a problem writing same record
=> Potentially a “lost update”

Writing while reading
Might be a problem – read might occur while being written
=> Inconsistent data

R, R, R, R W, W,W
file

CS 3204 - Arthur 40

Readers – Writers Problem

Critical resource
File

Consider multiple processes which can read or write
to the file

What constraints must be placed on these processes?
Many readers may read at one time
Mutual exclusion between readers and writers
Mutual exclusion between writers

CS 3204 - Arthur 41

Strong Reader Solution

reader(){
while(TRUE) {

P(mutexRC);
readCount = readCount + 1;
if (readCount == 1)

P(writeBlock);
V(mutexRC);

access_file;
P(mutexRC);
readCount = readCount – 1;
if (readCount == 0)

V(writeBlock);
V(mutexRC);

}
}

writer(){
while(TRUE) {

P(writeBlock);
access_file;

V(writeBlock);
}

}

Shared int: readCount = 0;
semaphore: mutexRC = 1, writeBlock = 1;

This solution gives preference to
Readers

If a reader has access to file and other
readers want access, they get it... all
writers must wait until all readers are

done

CS 3204 - Arthur 42

Reader / Writers – Ver 2

Create a Strong Writer

Give priority to a waiting writer

If a writer wishes to access the file, then it must be
the next process to enter its critical section

CS 3204 - Arthur 43

Strong Writers Solution

reader(){
while(TRUE) {
P(writePending);
P(readBlock);
P(mutex1);
readCount = readCount + 1;
if (readCount == 1) then
P(writeBlock);

V(mutex1);
V(readBlock);

V(writePending);
access file;

P(mutex1);
readCount = readCount – 1;
if (readCount == 0) then
V(writeBlock);

V(mutex1);
}

}

writer(){
while(TRUE) {
P(mutex2);
writeCount = writeCount + 1;
if (writeCount == 1) then

P(readBlock);
V(mutex2);
P(writeBlock);

access file;
V(writeBlock);
P(mutex2);
writeCount = writeCount - 1;
if (writeCount == 0) then

V(readBlock);
V(mutex2);

}
}

Shared int: readCount = 0, writeCount = 0
semaphore: mutex1 = 1, mutex2 = 1, readBlock = 1, writePending = 1, writeBlock = 1;

CS 3204 - Arthur 44

Implementing Counting Semaphores
struct sempahore {

int value = <initial value>;

boolean mutex = FALSE;

boolean hold = TRUE;

};

Shared struct semaphore s;

P(struct sempahore s) {

while(TS(s.mutex));

s.value = s.value – 1;

if (s.value < 0) {

s.mutex = FALSE;

while(TS(s.hold));

}

else {

s.mutex = FALSE;

}

V(struct sempahore s) {

while(TS(s.mutex));

s.value = s.value + 1;

if (s.value <= 0) {

while(!s.hold);

s.hold = FALSE;

}

s.mutex = FALSE;

}

