
Chapter 3

OS Organization

CS 3204 - Arthur 2

Design of OS

Factors influencing design of OS
1. Performance
2. Protection/Security
3. Correctness
4. Maintainability
5. Commercial factors
6. Standard & Open Systems

CS 3204 - Arthur 3

(1) Performance

Functionality v/s Performance
More resource abstraction
Higher levels of resource abstraction

Coding OS w.r.t. Performance
Assembly => Fast execution
BUT Assembly => Debugging ???

Others?

CS 3204 - Arthur 4

(2) Protection & Security

OS MUST NOT allow one process to interfere with the
operations of another process

File access
Memory space
Resources

Therefore, need to implement strategies that support
Isolation & Sharing

Challenge is:
If OS implements a policy, how do you prevent an
application from changing it

CS 3204 - Arthur 5

(3) Maintainability & (4) Correctness

Maintainability
Design and write systems to be maintainable

=> Sacrifice performance

Correctness
Does the OS meet the requirements ?
Can we write valid set of requirements ?

CS 3204 - Arthur 6

(5) Commercial influence

Commercial Influence
DOS => IBM-PC
UNIX => open platform

Commercial influence
=> machine nuances that hinder portability

UNIX => portable
MAC ???
Windows ???

CS 3204 - Arthur 7

(6) Standards & Open Systems

Early systems: User tied to ONE vendor

Desire: User gets pieces from ANY set of vendors
=> Need for Standards and Open Systems

Open Systems
=> Network of heterogeneous systems

=>Information flow [Big Endian v/s Little Endian]

CS 3204 - Arthur 8

(6) Standards & Open Systems

Open systems achieved through
Application integration => common interface
Portability => more applications among hardware platforms
Interoperability

Standardize remote access facilities
=> All systems talk same language over the network

POSIX = Open system
Standardize OS interfaces

CS 3204 - Arthur 9

Basic Functions of OS

1. Device Management
2. Process / Resource Management
3. Memory Management
4. File Management

CS 3204 - Arthur 10

Device Management

Isolation
Allocation
Share

Need device drivers
Must be able to configure into OS without re-
compiling OS (no Source Code)

CS 3204 - Arthur 11

Process / Resource Management

Process
Creating
Destroying
Blocking
Running

Resource
Isolation
Sharing

CS 3204 - Arthur 12

Memory Management

Allocation & use of main memory
Isolation & Protection
Sharing

Virtual Memory
Main memory & storage devices
Reference ‘memory’ on storage devices

Segmented VM – viable approach
Block & Offset

CS 3204 - Arthur 13

File Management

Transfer from main memory to file
Code (VM)
Data (VM)
Editors

Different file management strategies
Sequential
Indexed
Direct access
Networked

CS 3204 - Arthur 14

Basic OS Organization

CS 3204 - Arthur 15

Implementation Considerations

Process Modes

Kernels

Method of requesting system services

CS 3204 - Arthur 16

Processor Modes

Supervisor mode
Can execute any instruction

User mode
Subset of instructions

In UNIX:
What can root execute that application cannot ?

re-nice : OS call
chown : OS call
IOCTL (OS call) – if user interleaves output on printer
Memory accesses

CS 3204 - Arthur 17

Kernel

Trusted part of the OS
Executes in Supervisor mode
Generally, memory resident
OS extension run in User mode

Example: Drivers

Kernel functions are invoked by “trap”

•
•
•
•
•

Interrupt
Handler

CS 3204 - Arthur 18

Requesting Service from OS

System call
Process traps to OS Interrupt Handler
Supervisor mode set
Desired function executed
User mode set
Returns to application

CS 3204 - Arthur 19

Requesting Svc: System Call

CS 3204 - Arthur 20

Message Passing

User process constructs message indicating
function (service) needed
Invokes send to pass message to OS
Process blocks

OS receives message
OS initiates Function execution
Upon Function completion, OS Returns (“OK”)

Process un-blocks

………..

………..
Send and Receive analyze message
for proper format, etc.

CS 3204 - Arthur 21

Requesting Svc: Message Passing

CS 3204 - Arthur 22

Message Passing…

System call are more efficient

BUT

they also unduly tie the Application to
specifics of the OS

Tradeoffs ???

