Chapter 9

! High-level Synchronization

Introduction to Concurrency

= Concurrency
= Execute two or more pieces of code "at the same time*

= No choice:
= Geographically distributed data
= Interoperability of different machines
= A piece of code must "serve" many other client processes
« To achieve reliability

= By choice:
=« To achieve speedup
= Sometimes makes programming easier (e.g., UNIX pipes)

CS 3204




Possibilities for Concurrency

Architecture: Program Style:
Uniprocessor with: Multiprogramming,
- 1/O channel multiple process system
- I/O processor programs
- DMA
Multiprocessor Parallel programming
Network of processors Distributed Programs
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Examples of Concurrency
in Uniprocessors

Example 1: Unix pipes

- fast to write code
- fast to execute

Example 2: Buffering
Motivation:

- required when two asynchronous processes must
communicate

Example 3: Client/Server model

- geographically distributed computing
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Concurrency Conditions

Let Sidenote a statement.

Read set of Si:
R (Si) = {al, a2, ...,an}

Set of all variables referenced in Si

Write set of Si:
W (Si) = {b1,b2,...,bm},

Set of all variables changed by Si
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Concurrency Conditions...

C=A-B
R(C :=A-B)={ADB}
W(C:=A-B)={C}

cin>>A

R (cin>>A) = {}
W (cin >> A) = {A}
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Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to

execute concurrently with valid results:

1) R(S1) INTERSECT W (S2) = {}
2) W (S1) INTERSECT R(S2) = {}
3) W (S1) INTERSECT W (S2) = {}

These are called the Bernstein Conditions.
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Structured Parallel Constructs

| PARBEGIN / PARENDI

Sequential execution splits off into several concurrent

PARBEGIN
sequences
PAREND Parallel computations merge PARBEGIN
Q := C mod 25;
PARBEGIN Begin
Statement 1; N:=N-T1;
Statement 2; T:=N/5;
§ End;
Statement N; Proc1 (X, Y);
PAREND; PAREND;
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Parbegin / Parend Examples

Begin
S1;
Begin PARBEGIN
PARBEGIN S3;
A=X+Y; BEGIN
S2;
B =2 + 1; S4;
PAREND; PARBEGIN
S5;
C:=A-B; s6:
W :=C + 1; PAREND;
End; End;
PAREND;
S7;
End;
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Monitors

= P & V are primitive operations

= Semaphore solutions are difficult to accurately express for
complex synchronization problems

= Need a High-Level solution: Monitors
= A Monitor is a collection of procedures and shared data

= Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

= Data may be global to all procedures in the monitor or local to a
particular procedure

= No access of data is allowed from outside the monitor
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Condition Variables

= Within the monitor, Condition Variables are declared

= A queue is associated with each condition variable

= Only two operations are allowed on a condition variable:

X.wait

X.signal

The procedure performing the wait is put on the
queue associated with x

If queue is non-empty: resume some process at
the point it was made to wait

* Note: V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

+ OS scheduler decides which of several waiting monitor calls to

unlock upon signal
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Monitor...

= Queue to enter monitor via calls to procedures

= Queues within the monitors via condition variables

= ADTs and condition variables only accessible via monitor

procedure calls

ADT’s condition
variables

Procl
Proc2
Proc3

—————
———
—————
queues
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Monitors...

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself. Program

Monitor <name>

condition i; .
Request Begin
Request;
<CS>
Release
- Release;

end monitor
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N-Process Critical Section:
Monitor Solution

Monitor NCS ({
OK: condition
Busy: boolean <-- FALSE

Request () {
if (Busy) OK.wait;

Busy = TRUE;

} Procedure P {
Release() f{ NCS.Request () ;
Busy = FALSE; <CS>;
OK.signal; NCS.Release();
}
}
}
main() {

parend }

parbegin P;P;P;P;
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Shared Variable Monitor

monitor sharedBalance {
int balance;
public:
Procedure credit (int amount)
{ balance = balance + amount;}
Procedure debit (int amount)

{ balance = balance - amount;}
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Reader & Writer Schema

reader () { writer () |
while (true) { while (true) {
startRead() ; startWrite();

<wri >
<read the resource> write resource

finishRead () ; finishWrite();

fork (reader, 0);
fork (reader, 0);

fork (writer, 0);
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Reader & Writers Problem:
The solution

monitor reader_writer_2{
int numberOfReaders = 0;
boolean busy = false;
condition okToRead, okToWrite;

public:
startRead () {
if (busy || okToWrite.queue) okToRead.wait;
numberOfReaders = numberOfReaders+1;
okToRead.signal;
}
finishRead() {

numberOfReaders = numberOfReaders-1;
if (numberOfReaders =0) okToWrite.signal;
}
startWrite () {
if (busy || numberOfReaders != 0) okToWrite.wait;
busy = true;
}
finishWrite () {
busy = false;
if (okToWrite.queue) okToWrite.signal;
else okToRead.signal;
}
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Dining Philosophers’ Problem

while (TRUE) ({
think () ;

\ / eat ();

\

O
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Dining Philosophers’ Problem:
The solution

enum status {eating, hungry, thinking};

monitor diningPhilosophers{
status state[N]; condition self[N]; int j;

// This procedure can only be called from within the monitor
test (int 1) {

if((state[i-1 MOD N] != eating) && (state[i] == hungry)
&& (state[i+l MOD N] != eating) ) {
state[i] = eating;

self[i].signal;

}

public:
pickUpForks () {
state[i] = hungry;
test (i) ;
if (state[i] != eating) self[i].wait;

}
putDownForks () {

state[i] = thinking;

test (i-1 MOD N); test(i+l MOD N);
}

diningPhilosophers () { // Monitor initialization code
for (int i=0; i<N; i++) state[i] = thinking;
}
}
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Example: Synchronizing Traffic

|
= One-way tunnel [] T

= Can only use tunnel 0
if no oncoming o

traffic 5 %

= OK to use tunnel if []

traffic is already

flowing the right ¢

way

CS 3204




Example: Synchronizing Traffic

monitor tunnel {
int northbound = 0, southbound = 0;
trafficSignal nbSignal = RED, sbSignal = GREEN;
condition busy;
public:
nbArrival () {
if (southbound > 0) busy.wait();
northbound++;
nbSignal = GREEN; sbSignal = RED;
bi
sbArrival () {
if (northbound > 0) busy.wait();
southbound++;
nbSignal = RED; sbSignal = GREEN;
bi
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Example: Synchronizing Traffic

depart (Direction exit) (
if (exit = NORTH {
northbound--;
if (northbound == 0)
while (busy.queue())
busy.signal () ;

else if (exit == SOUTH) {
southbound—-—;
if (southbound == 0) while (busy.queue())

busy.signal () ;
}
}
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Monitor implementation
of a ring buffer

monitor ringBufferMonitor;
var ringBuffer: array[0..slots-1] of stuff;
slotInUse: 0..slots;
nextSlotToFill: 0..slots-1;
nextSlotToEmpty: 0..slots-1;
ringBufferHasData, ringBufferHasSpace: condition;

procedure fillASlot (slotData: stuff);

begin
if (slotInUse = slots) then wait (ringBufferHasSpace);
ringBuffer[nextSlotToFill] := slotData;
slotInUse := slotInUse + 1;
nextSlotToFill := (nextSlotToFill+l) MOD slots;
signal (ringBufferHasData) ;

end;
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Monitor implementation
of a ring buffer...

procedure emptyASlot (var slotData: stuff);

begin
if (slotInUse = 0) then wait (ringBufferHasData);
slotData := ringBuffer[nextSlotToEmpty];
slotInUse := slotInUse - 1;
nextSlotToEmpty := (nextSlotToEmpty-1) MOD slots;
signal (ringBufferSpace);

end;

begin
slotInUSe := 0;
nextSlotToFill := O0;
nextSlotToEmpty := 0;

end.
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