Chapter 9

! High-level Synchronization

Introduction to Concurrency

= Concurrency
= Execute two or more pieces of code "at the same time*

= No choice:
= Geographically distributed data
= Interoperability of different machines
= A piece of code must "serve" many other client processes
« To achieve reliability

= By choice:
=« To achieve speedup
= Sometimes makes programming easier (e.g., UNIX pipes)

CS 3204

Possibilities for Concurrency

Architecture: Program Style:
Uniprocessor with: Multiprogramming,
- 1/O channel multiple process system
- I/O processor programs
- DMA
Multiprocessor Parallel programming
Network of processors Distributed Programs
CS 3204

Examples of Concurrency
in Uniprocessors

Example 1: Unix pipes

- fast to write code
- fast to execute

Example 2: Buffering
Motivation:

- required when two asynchronous processes must
communicate

Example 3: Client/Server model

- geographically distributed computing

CS 3204

Concurrency Conditions

Let Sidenote a statement.

Read set of Si:
R (Si) = {al, a2, ...,an}

Set of all variables referenced in Si

Write set of Si:
W (Si) = {b1,b2,...,bm},

Set of all variables changed by Si

CS 3204

Concurrency Conditions...

C=A-B
R(C :=A-B)={ADB}
W(C:=A-B)={C}

cin>>A

R (cin>>A) = {}
W (cin >> A) = {A}

CS 3204

Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to

execute concurrently with valid results:

1) R(S1) INTERSECT W (S2) = {}
2) W (S1) INTERSECT R(S2) = {}
3) W (S1) INTERSECT W (S2) = {}

These are called the Bernstein Conditions.

CS 3204

Structured Parallel Constructs

| PARBEGIN / PARENDI

Sequential execution splits off into several concurrent

PARBEGIN
sequences
PAREND Parallel computations merge PARBEGIN
Q := C mod 25;
PARBEGIN Begin
Statement 1; N:=N-T1;
Statement 2; T:=N/5;
§ End;
Statement N; Proc1 (X, Y);
PAREND; PAREND;

CS 3204

Parbegin / Parend Examples

Begin
S1;
Begin PARBEGIN
PARBEGIN S3;
A=X+Y; BEGIN
S2;
B =2 + 1; S4;
PAREND; PARBEGIN
S5;
C:=A-B; s6:
W :=C + 1; PAREND;
End; End;
PAREND;
S7;
End;
CS 3204

Monitors

= P & V are primitive operations

= Semaphore solutions are difficult to accurately express for
complex synchronization problems

= Need a High-Level solution: Monitors
= A Monitor is a collection of procedures and shared data

= Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

= Data may be global to all procedures in the monitor or local to a
particular procedure

= No access of data is allowed from outside the monitor

CS 3204

Condition Variables

= Within the monitor, Condition Variables are declared

= A queue is associated with each condition variable

= Only two operations are allowed on a condition variable:

X.wait

X.signal

The procedure performing the wait is put on the
queue associated with x

If queue is non-empty: resume some process at
the point it was made to wait

* Note: V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

+ OS scheduler decides which of several waiting monitor calls to

unlock upon signal

CS 3204

Monitor...

= Queue to enter monitor via calls to procedures

= Queues within the monitors via condition variables

= ADTs and condition variables only accessible via monitor

procedure calls

ADT’s condition
variables

Procl
Proc2
Proc3

—————
———
—————
queues

CS 3204

queue

Monitors...

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself. Program

Monitor <name>

condition i; .
Request Begin
Request;
<CS>
Release
- Release;

end monitor

CS 3204

N-Process Critical Section:
Monitor Solution

Monitor NCS ({
OK: condition
Busy: boolean <-- FALSE

Request () {
if (Busy) OK.wait;

Busy = TRUE;

} Procedure P {
Release() f{ NCS.Request () ;
Busy = FALSE; <CS>;
OK.signal; NCS.Release();
}
}
}
main() {

parend }

parbegin P;P;P;P;

CS 3204

Shared Variable Monitor

monitor sharedBalance {
int balance;
public:
Procedure credit (int amount)
{ balance = balance + amount;}
Procedure debit (int amount)

{ balance = balance - amount;}

CS 3204

Reader & Writer Schema

reader () { writer () |
while (true) { while (true) {
startRead() ; startWrite();

<wri >
<read the resource> write resource

finishRead () ; finishWrite();

fork (reader, 0);
fork (reader, 0);

fork (writer, 0);

CS 3204

Reader & Writers Problem:
The solution

monitor reader_writer_2{
int numberOfReaders = 0;
boolean busy = false;
condition okToRead, okToWrite;

public:
startRead () {
if (busy || okToWrite.queue) okToRead.wait;
numberOfReaders = numberOfReaders+1;
okToRead.signal;
}
finishRead() {

numberOfReaders = numberOfReaders-1;
if (numberOfReaders =0) okToWrite.signal;
}
startWrite () {
if (busy || numberOfReaders != 0) okToWrite.wait;
busy = true;
}
finishWrite () {
busy = false;
if (okToWrite.queue) okToWrite.signal;
else okToRead.signal;
}

CS 3204

Dining Philosophers’ Problem

while (TRUE) ({
think () ;

\ / eat ();

\

O

CS 3204

Dining Philosophers’ Problem:
The solution

enum status {eating, hungry, thinking};

monitor diningPhilosophers{
status state[N]; condition self[N]; int j;

// This procedure can only be called from within the monitor
test (int 1) {

if((state[i-1 MOD N] != eating) && (state[i] == hungry)
&& (state[i+l MOD N] != eating)) {
state[i] = eating;

self[i].signal;

}

public:
pickUpForks () {
state[i] = hungry;
test (i) ;
if (state[i] != eating) self[i].wait;

}
putDownForks () {

state[i] = thinking;

test (i-1 MOD N); test(i+l MOD N);
}

diningPhilosophers () { // Monitor initialization code
for (int i=0; i<N; i++) state[i] = thinking;
}
}
CS 3204

Example: Synchronizing Traffic

|
= One-way tunnel [] T

= Can only use tunnel 0
if no oncoming o

traffic 5 %

= OK to use tunnel if []

traffic is already

flowing the right ¢

way

CS 3204

Example: Synchronizing Traffic

monitor tunnel {
int northbound = 0, southbound = 0;
trafficSignal nbSignal = RED, sbSignal = GREEN;
condition busy;
public:
nbArrival () {
if (southbound > 0) busy.wait();
northbound++;
nbSignal = GREEN; sbSignal = RED;
bi
sbArrival () {
if (northbound > 0) busy.wait();
southbound++;
nbSignal = RED; sbSignal = GREEN;
bi

CS 3204

Example: Synchronizing Traffic

depart (Direction exit) (
if (exit = NORTH {
northbound--;
if (northbound == 0)
while (busy.queue())
busy.signal () ;

else if (exit == SOUTH) {
southbound—-—;
if (southbound == 0) while (busy.queue())

busy.signal () ;
}
}

CS 3204

Monitor implementation
of a ring buffer

monitor ringBufferMonitor;
var ringBuffer: array[0..slots-1] of stuff;
slotInUse: 0..slots;
nextSlotToFill: 0..slots-1;
nextSlotToEmpty: 0..slots-1;
ringBufferHasData, ringBufferHasSpace: condition;

procedure fillASlot (slotData: stuff);

begin
if (slotInUse = slots) then wait (ringBufferHasSpace);
ringBuffer[nextSlotToFill] := slotData;
slotInUse := slotInUse + 1;
nextSlotToFill := (nextSlotToFill+l) MOD slots;
signal (ringBufferHasData) ;

end;

CS 3204

Monitor implementation
of a ring buffer...

procedure emptyASlot (var slotData: stuff);

begin
if (slotInUse = 0) then wait (ringBufferHasData);
slotData := ringBuffer[nextSlotToEmpty];
slotInUse := slotInUse - 1;
nextSlotToEmpty := (nextSlotToEmpty-1) MOD slots;
signal (ringBufferSpace);

end;

begin
slotInUSe := 0;
nextSlotToFill := O0;
nextSlotToEmpty := 0;

end.

CS 3204

