{ Chapter 7: Scheduling

Process Scheduler

Why do we even need to a process
scheduler ?
In simplest form, CPU must be shared by
. 0S
« Application
= In reality, [multiprogramming]
« OS : many separate pieces (processes)
« Many Applications

Scheduling [Policy] addresses...
= When to remove a process from CPU ?
Which ready process to allocate the CPU to ?

Model of Process Execution

Preemption or voluntary yield

New Scheduler

Process

Allocate

“Blocked”

Resources

Recall Resource Manager

Request P "/"iie};as’é'

| P 2
i Allocate 8
| o)

g g ~

Allocate

‘@ T % [:? [:?

Resource Pool

| Scheduler as CPU Res Mgr

Ready List
Scheduler

=
i

Ready _~"Releast’
torun § Dispagch 3

Release
Dispatch

el

Dispatch

Units of time for a
time-multiplexed CPU

| Scheduler Components

From
Other
States

___________________________________ Process
Ready Process, Descriptor

vV v
{ Enqueue H Rﬁf\d{y I
isf

A

Dispatch

Context
Switch

Running Process

Context Switch

= Processes are switched out using Context Switching

= Context Switch:
= Save pertinent info for current process
» PC, Register, Status, etc.
= Update PC, Register, Status, etc.
» with info for process selected to run

= Switching User Process
= 2 Context switches (CTX)

Process 1 running
CTX
Dispatcher : selects next process
CTX
Process 2 running

Process Context

Right Operand

Left Operand Status

Registers

Functional Unit
Result ALU
Ctl Unit

Context Switch

>
E Process Descriptor

Invoking the Scheduler

= Need a mechanism to call the scheduler
= Voluntary call

= Process blocks itself

= Calls the scheduler
= Involuntary call

= External force (interrupt) blocks the
process

= Calls the scheduler

Contemporary Scheduling

= Involuntary CPU sharing — timer
interrupts
= Jime quantum determined by interval
timer — usually fixed size for every process
using the system

= Sometimes called the time slice length

Choosing a Process to Run

Running Process

» Mechanism never changes

= Strategy = policy the dispatcher uses to
select a process from the ready list

= Different policies for different requirements

Policy Considerations

|
= Policy can control/influence:

» CPU utilization

= Average time a process waits for service

= Average amount of time to complete a job
= Could strive for any of:

= Equitability

= Favor very short or long jobs

= Meet priority requirements

= Meet deadlines

Optimal Scheduling

Suppose the scheduler knows each process p;'s
service time, ©(p;) -- or it can estimate each
up) :

Policy can optimize on any criteria, e.g.,

= CPU utilization

= Waiting time

= Deadline

= To find an gptimal schedule:

= Have a finite, fixed # of p,

= Know t(p; for each p;

= Enumerate all schedules, then choose the best

However ...

= The t(p;) are almost certainly just
estimates

= General algorithm to choose optimal
schedule is O(n?)

= Other processes may arrive while these
processes are being serviced

= Usually, optimal schedule is only a
theoretical benchmark — scheduling
policies try to gpproximate an optimal
schedule

Model of Process Execution

Preemption or voluntary yield

New Ready
Process List_

Done

Scheduler

Resource
Manager _

b
“Blocked”
Resources

“Running”

Allocate Request

Selection Strategies

= Motivation
= To “optimize” some aspect of system behavior

= Considerations

= Priority of process
« External : assigned

« Internal : aging
» Fairness : no starvation
= Overall Resource Utilization

Selection Strategies...

= Considerations...
= Turnaround time

= Average time / job

= Throughput

= Jobs / time unit
= Response time
= System availability
» Deadlines

Talking About Scheduling ...

Let P = {p; | 0 <i < n} = set of processes
Let S(p;) € {running, ready, blocked}

Let t(p;) = Time process needs to be in running
state (the service time)

Let W(p;) = Time p; is in ready state before first
transition to running (wait time)

Let Tgag(p;) = Time from p; first enter ready to
last exit ready (turnaround time)

Batch Throughput rate = inverse of avg Trrng
Timesharing response time = W(p,)

Definition & Terms

= Time Quantum
= Amount of time between timer interrupts
= Also called Time Slice

= Service Time T (P))

= Amount of time process needs to be in Running
state (acquired CPU) before it is completed

= Wait Time W (P;)
= Time a process spends waiting in the Ready state
before its first transition to the Running state

Definition & Terms...

= Turnaround Time T (P))

= Amount of time between moment process
first enters Ready state and the moment
the process exits Running state for the last
time (completed)

= Service time, Wait time & Turnaround
time are measurable metrics used to
compare scheduling algorithms

Simplified Model

Preemption or voluntary yield

New
Process

Scheduler Done

“Running”

Resource
Manager

Allocate _
ob

-Ml [e

= Simplified, but still provide analysis result
» Easy to analyze performance

Classes of Scheduling Algorithms

= 2 major classes

= Non-preemptive
= Run to completion

= Preemptive
= Process with highest priority always gets CPU

Recall : Several ways to establish priority

Nonpreemptive Schedulers

l Blocked or preempted processes
New Rez.xdy Scheduler @ Done
Process List

= Try to use the simplified scheduling model
= Only consider running and ready states
= Ignores time in blocked state:
= "New process created when it enters ready state”

= "Process is destroyed when it enters blocked
state”

= Really just looking at “small phases” of a process

First-Come-First-Served

)
350
125
475
250

75

AW~ o =T

0i350

Trraa(Po) = Upy) =350

Wi(py) = 0

First-Come-First-Served

up)
350

T Ry
ES
Q
W

350y 475

Trraa(Po) = T(Py) = 350

TyraaP1) = (6(P)) +Troa(Po)) = 1254350 = 475

Wi(py) =0
W(p)) =Trreu(py) =350

)
350
125
475
250

75 475

F N N

First-Come-First-Served

950

‘ Py ‘ Py ‘ P>

Trraa(Po) = T(py) = 350
Trraa(Py) = (UPy) +Trag(Po)) = 125+350 = 475
Trraa(P2) = (UP,) +Tpag(Py)) = 475+475 = 950

W(py) =0
W(p)) =Trru(py) =350
W(p,) =Tru(py) =475

up)
350

125
475

First-Come-First-Served

250
75

F N S

950 v 1200

[p [D

‘Px‘

Trraa(Po) = T(Py) = 350

Trrna(P1) = (°(P) +Traa(Py)) = 125+350 = 475
Tyraa(P2) = (2(Py) +Tiroa(P))) = 475+475 = 950
Trraa(P3) = (UD3) +Trgoa(P2)) = 2504950 = 1200

Wi(py) =0

W(p)) = Trru(py) =350
W(p,) =Trru(p) =475
W(p3) = Trgu(po) =950

T(pi)
350
125

475
250
75

AW~ o =T

First-Come-First-Served

1200y 1275

‘ Py ‘ Py ‘ P>

‘ Ps ‘Pa‘

Trraa(Po) = T(py) = 350

TirndPy) = (¥(Py) +Tyya(Py)) = 125+350 = 475
Trraa(P2) = (UPy) +Topna(P))) = 475+475 = 950
Trroa(P3) = (TP3) +Trroa(P2)) = 2504950 = 1200
Trrna(Ps) = (U(Py) +Trgpg(P3)) = 75+1200 = 1275

W(py) =0

W(p)) =Trru(py) =350
W(p,) =Trru(py) =475
W(p;) = Trru(py) =950
W(p,) = Trgu(py) = 1200

up)
350

B LN~ =T
—
)
G

75 0 350 475

FCFS Average Wait Time

*Easy to implement
e[gnores service time, etc
*Not a great performer

900 1200 1275

[p [l D

[o [p]

Trraa(Po) = T(Py) = 350

Trrna(P1) = (°Py) +Troa(Py)) = 125+350 = 475
Tyraa(P2) = (2(Py) +Tiroa(P))) = 475+475 = 950
Trraa(P3) = (UD3) +Trgoa(P2)) = 2504950 = 1200
Trraa(Ps) = (W) +Trraa(P3)) = 75+1200 = 1275

W,y = (0+350+475+950+1200)/5 =

W(p) =0

W(p)) = Trru(py) =350
W(p,) =Tru(p) =475
W(p3) = Trgp(po) =950
W(py) = Tigpa(p;) = 1200

297415 = 595

Shortest Job Next

uUp)
350

125
475
250

75

B W= O

<
FE
W

Trraa(Py) = TPy =75

W(p,) =0

Shortest Job Next

py)
350
125
475
250

75 075y 200

BWN ==

Trraa(P1) = UPD+I(P,) = 125475 =200

Trraa(Py) = TPy =75

W(p) =75

Wipy)=0

Shortest Job Next

Shortest Job Next

| L
1 up) 1t(py)
0 350 0 350
1 125 1 125
2 475 2 475
3 250 3 250
475 0 75 200 y 450 475 0 75 200 450 y 800
PR .
Trraa(Po) = T(Pe)+T(P3)+T(p)+T(p,) = 350+250+125+75 = 800 W(p,) =450
Trraa(Py) = TpP+T(p,) = 125475 = 200 Wi(p,) =75 Trraa(P1) = T(p)+T(p,) = 125475 = 200 W(p) =75
Trraa(P3) = TP)+HTUPP+T(P,) = 250+125+75 =450 W(p;) =200 Trraa(P3) = T(P3)+T(p))+7(p,) = 2504125475 = 450 W(p;) =200
Tigua(Ps) = TP =75 Wi(py) =0 Trraa(Ps) = T(py) =75 Wi(p,) =0
Shortest Job Next Shortest Job Next
:) 1:3(28 ;) 1:3(28 eMinimizes wait time
1 125 1 125 *May starve large jobs
2 475 2 475 *Must know service times
3 250 3 250
475 0 75 200 450 800 I 1275 475 0 75 200 450 800 1275
(el [po | P | ol oo [oy | P
Trraa(Po) = TPP+HTP)+HTPHT(P,) = 350+250+125+75 = 800 W(p,) =450 Trrna(Po) = TPP+HTP)+HTPHTP,) = 350+250+125+75 = 800 W(p,) =450
Trraa(P)) = TpP+T(p,) = 125475 = 200 Wi(p,) =75 Trraa(P)) = TpP+T(p,) = 125475 = 200 Wi(p,) =75
Trraa(P2) = T(P)+TPY+T(P)+T(P)+T(P,) = 475+350+250+125+75 W(p,) = 800 Trraa(P2) = T(P)+TUPY+T(P)+T(P)+T(P,) = 475+350+250+125+75 W(p,) = 800
=1275 =1275
Trraa(P3) = TP)+HTUPP+T(P,) = 250+125+75 =450 W(p;) =200 Trraa(P3) = TP)+HTPP+T(P,) = 250+125+75 =450 W(p;) =200
Trraa(Py) =Upy) =75 Wi(py) =0 Trraa(Ps) = Upy) =75 Wi(p,) =0

W = (450+75+800+200+0)/5 = 1525/5 = 305

Priority Scheduling

|
1
0
1
2
3
4

Up;) Pri *Reflects importance of external use
350 5 *May cause starvation
}ég g *Can address starvation with aging
250 1
4 0 250 375 850 925 1275
‘ Py ‘ P ‘ P> | Py ‘ Po

Trrad(Po) = T(P)+T(P)+T(P)+T(P)) I+T(P;) = 350+75+475+125+250 W(p,) = 925

=1275

W(p,) =250
Trirpa(Pr) = TP)+2(ps) = 125+250 = 375 Wip,) = 375
Trraa(P2) = T(P,)+T(p))+T(p;3) = 47541254250 = 850 -
Trraa(P3) = T(p3) =250 Wi(p,) =0
Trrad(P4) = TP+ TP+ TP)+T(P;) = 75+475+125+250 = 925 W(p,) = 850

Wy = (925+250+375+0+850)/5 = 2400/5 = 480

Deadline Scheduling

350
125
475
250

75

AW - o =T

T(p;) Deadline

575
550
1050
(none)
200

*Allocates service by deadline

*May not be feasible
200 550 575 1050
0 1275
Lo o] po P e |
‘ Py ‘ Py Po P. ‘ P3 ‘
‘ Py ‘ () Py P ‘ P3 ‘

Preemptive Schedulers

New
Process

Preemption or voluntary yield

g Relady I——[Scheduler @ Done
List

= Highest priority process is guaranteed
to be running at all times

= Or at least at the beginning of a time slice

= Dominant form of contemporary
scheduling

= But complex to build & analyze

lRound Robin (TQ=50)

up)
350

125
475
250

75

LD =O"

W(py) =0

10

lRound Robin (TQ=50)

1 Tpy)

0 350

1 125

2 475 0 100
3 250

17

Wi(py) =0
W(p,) =50

lRound Robin (TQ=50)

up)
350

BON—O =
ES
Q
W

W(py) =0
W(p)) =50
W(p,) = 100

lRound Robin (TQ=50)

1 Tpy)

250 O 100 200

Wi(py) =0
W(p,) =50
W(p,) =100
Wi(py) = 150

lRound Robin (TQ=50)

i(py)

0 350

1 125

2 475

3 250 O 100 200
- [p [p, [p: [p.]

W(py) =0
W(p,) =50
W(p,) = 100
W(p,) = 150
W(p,) =200

11

Round Robin (TQ=50)

; Py
0 350
1 125
2 475
3 250 100 200 300
17 (lnlnlelnls)

Wi(py) =0
W(p,) =50
W(p,) =100
Wi(py) = 150
Wi(p,) =200

Round Robin (TQ=50)

upy)
350
125
475
250 100 200 300 400 475
75 ‘Pu‘Pl‘Pv‘Pi‘P4‘Pt)‘P|‘Pv‘P‘P4‘

B WO - =T

W(py) =
W(p,) =50
W(p,) = 100
W(py) = 150
Trraa(Ps) =475 W(p,) =200

Round Robin (TQ=50)

Py
350
125
475
250 100 200 400 475 550

75 ‘P(»‘PI‘P‘P‘P4‘P0‘P1‘P‘Pi‘P4‘P(»‘P|‘

W= o =T

Wi(py) =0
Trraa(Py) =550 Wi(p,) =50

W(p,) =100

Wi(py) = 150
Trgua(ps) = 475 W(p,) =200

Round Robin (TQ=50)

1 upy)
0 350
1 125
2 475
3 250 100 200 300 400 475 550 650
4 75 ‘Pu‘Pl‘Pv Pz‘P4‘PtJ‘P|‘PvP‘P4‘P11‘P|‘P‘P‘
650 750 850
mmmmm
W(py) =0
Trraa(Py) =550 W(p,)) =50
W(p,) =100
Tiraa(P3) = 950 W(p;) = 150
Trraa(Ps) =475 W(p,) =200

12

Round Robin (TQ=50)

T)
0 350
1 125
2 475
3 250 100 200 300 400 475 550 650
4 75 ‘P(»‘PI‘P‘P‘P4‘P0‘P1‘P‘Pi‘P4‘P(»‘P|‘P7‘P1‘
650 750 850 950 1050
‘Pu‘Pa Pa‘Pu‘P‘P‘Po‘Pv Pu‘
Trgaa(py) = 1100 Wi(py) =0
Trraa(Py) = 550 Wi(p,) =50
W(p,) =100
Trgaa(ps) =950 W(p;) =150
Trraa(Py) =475 W(p,) =200

Round Robin (TQ=50)

1 upy)
0 350
1 125
2 475
3 250 100 200 300 400 475 550 650
4 75 ‘Pu‘Pl‘Pv‘Pi‘P4‘PtJ‘P|‘Pv‘P‘P4‘Pu‘P|‘P‘P‘
650 850 1050 1150 1250 1275
‘P(»‘P‘P‘P(»‘Pa Pz‘Pu‘P‘Po‘PvP‘P‘P‘
Trgag(py) = 1100 Wi(p,) =
Trgaa(py) = 550 Wi(p) =50
Trraa(Py) = 1275 W(p,) =100
Trrpa(p3) = 950 W(p;) = 150
Trraa(Ps) =475 W(p,) =200

Round Robin (TQ=50)

1 (p,) *Equitable
0 350 *Most widely-used
é 41&3; *Fits naturally with interval timer
3250 100 200 400 475 550 650
4 75 ‘P(»‘PI‘P‘P‘P4‘P0‘P1‘P‘Pi‘P4‘P(»‘P|‘P1 Pz‘
750 1050 1150 1250 1275
‘Pu‘Pa Pa‘Pu‘P‘P‘Po‘Pv P‘)‘P‘Pv P, [Py
Trgaa(Py) = 1100 W(py) =0
Trraa(Py) = 550 W(p,) =50
Trraa(Py) = 1275 W(p,) =100
Trraa(P3) = 950 W(p,) = 150
Trraa(Py) =475 W(p,) =200

Trradeave = (1100+550+1275+950+475)/5 = 4350/5 = 870
Wy = (0+50+100+150+200)/5 = 500/5 = 100

RR with Overhead=10 (TQ=50)

i () *Overhead must be considered
0 350
1 125
2 475
3 250 0 240 360 480 540 575633 670 790
1 % 0 £ %) BN 8 N N 1 p. [o]
790 910 1030 1150 1270 1390 1510 1535
Coo Mo Wpa Moo Moo Wpa Moo Mo Moo Mo W e
T'l'Rnd(pO) =1320 W(pﬂ) =0
Trgaa(p,) = 660 W(p,) =60
Trraa(Py) = 1535 W(p,) =120
Tiraa(Py) = 1140 W(p;) = 180
Tiraa(Ps) = 565 W(p,) =240

Tongavg = (13204660+1535+1140+565)/5 = 5220/5 = 1044
W, = (0+60+120+180+240)/5 = 600/5 = 120

13

Multi-Level Queues

New
Process

Preemption or voluntary yield

Ready List,

H—WI—»—{ Scheduler Done
*All processes at level i run before
any process at level j
*At a level, use another policy, e.g. RR

|Contemporary Scheduling

|
= Involuntary CPU sharing -- timer interrupts

» 7ime guantum determined by interval timer --
usually fixed for every process using the
system

= Sometimes called the time slice length
» Priority-based process (job) selection

= Select the highest priority process

= Priority reflects policy
= With preemption
» Usually a variant of Multi-Level Queues

BSD 4.4 Scheduling

= Involuntary CPU Sharing
= Preemptive algorithms
= 32 Multi-Level Queues

= Queues 0-7 are reserved for system
functions
= Queues 8-31 are for user space functions

= nice influences (but does not dictate)
queue level

UNIX Scheduler

Highest

‘ Taken from Modern Operating Systems, 2™ Ed, Tanenbaum, 2001

priority [
~

4
3
2
1

o
0
1

a
3

Lowest

w

Waiting for disk /O —O Process watting
Waiting for disk buffer in kernel mode
Waiting for terminal input
Waiting for terminal output [
Waiting for child to exist
User priority 0
User priority 1 OO
— Process waiting
User priority 2 i usor mode
User priority 3 =

il

priority

Process queued
on priority level 3

The UNIX scheduler is based on a multilevel queue structure

14

Process Life Cycle

Job Process
Scheduler Scheduler
——(hola H
[Read
B e
Dark square contains fixed, maximum number of processes I

Job and Process Scheduler

I Job Scheauler
¢ Controls when jobs will be allowed to contend the CPU
e Most popular techniques
FIFO First in, first out
SIF Shortest job first
Process Scheduler
e Controls when individual jobs (processes) will actually get the CPU
¢ Only interesting in multi-programming
¢ Most popular technique is Round Robin

* Give each process one time slice in turn until complete

Turnaround and Weighted
Turnaround Time

Let: N be number of jobs
A, be arrival time of i-th job
F; be finish time of i-th job
Turnaround time for ith job: T = F- A
Average turnaround time for ith job: T=ZXIT;/N
Weighted turnaround time for ith job:
WT; = (F; - A;) / (Service-time);
Average Weighted Turnaround time:
WT =X WT,/N

Processor Sharing (PS)
“Theoretical” Scheduling Algorithm

= Limit of RR as time quantum goes to zero.

= Like giving each CPU cycle to a different
process, in round robin fashion.

= /Vprocesses scheduled by PS
= Each job runs on dedicated Mfold slower CPU.

= Thus, READY = RUNNING.

= CPU Time “shared” equally among processes

15

Scheduling Example 2

Assume:

Multiprogramming

Processor Sharing Process Scheduling

Job Arrives
1 10.0
2 10.2
3 10.4
4 105
5 108

0.3
0.5
0.1
0.4
0.1

FIFO Job Scheduling

Run Time

| Definitions

Number processes in ready queue before

this event
Current event:
A=Arrival
S=Schedule
F=Finish
H=In HoldQ event occurred
Current
time
Time Event # Jobs Headway

Reduction in run time that each process
in ready queue experiences since last

Remaining run time of each
process in ready queue

Time Left

Example 2 Continued

Time Event # Jobs Headway

100 1AS

102 2AS 1 0.2

104 1F 2 0.1
3AS

105 4AS 2 0.05

1065 3F 3 0.05

Time Left

1

AN DA WN WNDN =

0.3
0.1
0.5
0.4
0.1
0.35
0.05
0.4
0.3
0.35

Example 2 Continued...

Time Event # Jobs Headway Time Left

10.8

11.35
11.40

5AS

5F

2F
4F

2

0.075 2 0.225
4 0.275
5 0.1
0.1 2 0.125
4 0.175
0.125 4 0.05
0.05

16

T and W for Example 2 Scheduling Example 4

e - - FAssume:
Job Run Start Finish Ti WTi
1 0.3 10.0 10.4 0.4 1.33 FIFO Job Scheduling 100 K Main Memory
0.5 10.2 11.35 1.15 23 5 Tape Drives Processor Sharing Process Scheduling

0.1 10.4 10.65 0.25 25

2

3 . .
Job Arrives RunTime Memory Tapes

4 0.4 10.5

5

0.9 2.25 1 1.0 0.5 30 2
0.1 10.8 0.3 3.0
2 1.2 1.0 50 1
Q 3.0 11.38 3 1.3 1.5 50 1
T = 0.6 WT = 2.276 4 14 2.0 20 2
Check: vV 5 1.7 0.5 30 3
Because CPU was never idle, 1.4 + 10.0 must equal time of last event (11.4) 6 21 1.0 30 2
Example 4 Continued Example 4 Continued ...
Time Event #Jobs HWay MM Tapes Time Left Time Event # Jobs HWay MM Tapes Time Left
Lo LAS 70 3 105 21 6AS 2 005 0 0 2 0.65
1.2 2A5 1 0.2 20 2 103
2 10 4175
13 3AH 2 0.05 20 2 1 025 6 1.0
2 0.95 4.05 2F 3 065 50 4 11
14 ans 2 0.05 0 0 1 02 3s 0 6 0.35
2 09 3 15
4 20 51 6F 3 035 30 2 4 0.75
1.7 5AH 3 0.1 0 0 101 3 115
2 08
6.6 4F 2 075 50 a 3 04
4 19
2.0 1F 3 0.1 30 2 2 07 5s 20 1 505
4 18 74 3F 2 04 70 2 5 0.1
75 5F 1 01 100 5

T and W for Example 4
Job

Run Arrives Finish Ti WTi

1 05 1.0 2.0 1.0 20
2 1.0 1.2 405 285 285
3 15 13 7.4 6.1 4.06
4 20 1.4 6.6 52 26
5 05 17 7.5 58 11.6
6 21 241 5.1 3.0 3.0
23.95 26.11

T =399 WT = 4.35

18

