!'_ Chapter 7: Scheduling

Process Scheduler

= Why do we even need to a process
scheduler ?
= In simplest form, CPU must be shared by

= OS
= Application

= In reality, [multiprogramming]
= OS : many separate pieces (processes)
= Many Applications

s Scheduling [Policy] addresses...
= When to remove a process from CPU ?
= Which ready process to allocate the CPU to ?

Model of Process Execution

New
Process

Preemption or voluntary vield

Scheduler Done

“Running”

“Blocked”

Resources

Recall Resource Manager

Blocked Processes
R Resource
Manager

Request | Releage

Allocate

Release
| Allocate |

+
Toeeng 0, 2
Allocate [:i [:i

Resource Pool

Scheduler as CPU Res Mgr

Ready List

e I 'LS cheduler }

Ready _~"Releasé

torun i Dispagch

@ Release

Dispatch

Release
Dispatch

Units of time for a
time-multiplexed CPU

Scheduler Components

From

Other
States

.................................. Process
Ready Process Descriptor

-

\ 2l ™~

Enqueue

: Context
Dispatch Switch

CPU

Running Process

Context Switch

s Processes are switched out using Context Switching

s Context Switch:
» Save pertinent info for current process
= PC, Register, Status, etc.

» Update PC, Register, Status, etc.
« With info for process selected to run

= Switching User Process
= 2 Context switches (CTX)

Process 1 running
CTX
Dispatcher : selects next process
CTX
Process 2 running

Process Context

Ctl Unit

Right Operand
‘ Left Operand Status
Registers
R1 J
R2 R
Rn : .
4 T Functional Unit
Result ALU
PC
IR

Context Switch

ess Descriptor

Process Descriptor

Invoking the Scheduler

s Need a mechanism to call the scheduler
= Voluntary call

= Process blocks itself

= Calls the scheduler
= Involuntary call

» External force (interrupt) blocks the
process

= Calls the scheduler

Contemporary Scheduling

= Involuntary CPU sharing — timer
interrupts

» [ime guantum determined by interval
timer — usually fixed size for every process
using the system

=« Sometimes called the &ime slice length

Choosing a Process to Run

~

v ¥
Context
Dispatch H son. ex] '— CPU
- —4

Running Process

s Mechanism never changes

s Strategy = policy the dispatcher uses to
select a process from the ready list

» Different policies for different requirements

Policy Considerations

= Policy can control/influence:
« CPU utilization
= Average time a process waits for service
= Average amount of time to complete a job

= Could strive for any of:
» Equitability
» Favor very short or long jobs
= Meet priority requirements
» Meet deadlines

Optimal Scheduling

m Suppose the scheduler knows each process p,'s
service time, t(p;) -- or it can estimate each
T(Py) -

= Policy can optimize on any criteria, e.q.,

» CPU utilization
» Waiting time
» Deadline
» To find an gptimal schedule:
» Have a finite, fixed # of p,
» Know t(p;) for each p,
» Enumerate all schedules, then choose the best

However ...

s The t(p,) are almost certainly just
estimates

= General algorithm to choose optimal
schedule is O(n?)

= Other processes may arrive while these
processes are being serviced

= Usually, optimal schedule is only a
theoretical benchmark — scheduling
policies try to approximate an optimal
schedule

Model of Process Execution

New
Process

Preemption or voluntary vield

Scheduler Done

“Running”

(Resource
Manager

Allocate Request

100

“Blocked’
Resources

Selection Strategies

= Motivation
= T0 “optimize” some aspect of system behavior

s Considerations

= Priority of process
« External : assigned

« Internal : aging
s Fairness : no starvation
= Overall Resource Utilization

Selection Strategies...

s Considerations...
= Jurnaround time

= Average time / job

= Throughput

» Jobs / time unit
= Response time
» System availability

= Deadlines

Talking About Scheduling ...

et P ={p;| 0 <i< n} = set of processes
et S(p;) € {running, ready, blocked}

_et ©(p;) = Time process needs to be in running
state (the service time)

Let W(p,) = Time p, is in ready state before first
transition to running (wait time)

Let T1rng(Pi) = Time from p; first enter ready to
last exit ready (turnaround time)

Batch 7hroughput rate = inverse of avg Tqgq
Timesharing response time = W(p)

Definition & Terms

s Time Quantum
= Amount of time between timer interrupts
= Also called Time Slice

= Service Time T (P;)

= Amount of time process needs to be in Running
state (acquired CPU) before it is completed

s Wait Time W (P))

= Time a process spends waiting in the Ready state
before its first transition to the Running state

Definition & Terms...

= Turnaround Time T (P;)

= Amount of time between moment process
first enters Ready state and the moment
the process exits Running state for the last
time (completed)

= Service time, Wait time & Turnaround
time are measurable metrics used to
compare scheduling algorithms

Simplified Model

Preemption or voluntary yield

New Retady Scheduler CP Done
Process LlSt it
i0D] “Running”’
((Ready »
(Resource

Manager _

Resources

= Simplified, but still provide analysis result
= Easy to analyze performance

Request

b
“Blocked”

Classes of Scheduling Algorithms

= 2 major classes

= Non-preemptive
= Run to completion

= Preemptive
= Process with highest priority always gets CPU

Recall : Several ways to establish priority

Nonpreemptive Schedulers
l Blocked or preempted processes

New Retady Scheduler @ » Done
Process List

= Try to use the simplified scheduling model
= Only consider running and ready states

s Ignores time in blocked state:
= 'New process created when it enters ready state”

= "Process is destroyed when it enters blocked
state”

» Really just looking at “small phases” of a process

First-Come-First-Served

1 py)
0 350
I 125

475

2
3 250
4 5 0 vy 350

T1rna(Po) = T(Py) = 350 W(p,) =0

1 T(py)
0 350

I 125
2 475
3 250
4 75

350y 475

Pq

Trrna(Po) = T(py) = 350

Trraa(Py) = (T(Py) +T1gaa(Po)) = 1254350 = 475

First-Come-First-Served

W(py) =0
W) =Trrua(py) = 350

First-Come-First-Served

1 py)

0
1

2
3
4

350
125

475
250
75

475

950

Pq

P

%)

Trrna(Po) = T(py) = 350
Trrua(P1) = (TP +Trrad(Po)) = 1254350 = 475

Trrea(P2) = (T(Py) +Tiraa(py)) = 475+475 =950

W(py) =0
W) =Trrua(py) = 350
W(Pp,) = Trraa(py) =475

1 1(p)
0 350
1 125

475

First-Come-First-Served

2
3 250
4 75

950 4 1200

Pq

P

P>

P

Trrna(Po) = T(py) = 350

Trraa(Py) = (T(P1) +Trraa(Po)) = 1254350 = 475
Trrea(P2) = (T(Py) +Tirpa(py)) = 475+475 =950

Trend(Ps) = (TP3) +Trpug(P)) = 2504950 = 1200

W(py) = 0
W) = Trraa(Po) = 350
WP, = Trgaa(py) =475
W(p;) = Trrua(Pa) =950

First-Come-First-Served

1
0
1

2
3
4

T(p;)
350
125
475

250

75

1200y 1275

Pq

P

P>

P Py

Trrna(Po) = U(Py) = 350
Trraa(Py) = (T(P1) +Trraa(Po)) = 1254350 = 475
Trrea(P2) = (T(Py) +Tirpa(py)) = 475+475 =950

Trrag(P3) = (T(P3) +Trpog(Py)) = 2504950 = 1200
Trrad(Ps) = (0P,) +Trpog(Ps)) = 75+1200 = 1275

W(py) = 0
W) = Trraa(Po) = 350
WP, = Trgaa(py) =475
W(Pp3) = Trgaa(py) =950
W(Pps) = Trraa(pz) = 1200

FCFS Average Wait Time

1
0
1

2
3
4

13(5138 eEasy to implement
195 e[gnores service time, etc
475 eNot a great performer
250
75 0 350 475 900 1200 1275
Pq P P> P P4
Trrna(Po) = T(P) = 350 W(p, =0

TrrudP1) = T(P) +Trra(Po)) = 125+350 = 475
Trrna(P2) = (T(P,) +Trpa(py)) = 475+475 =950
Trrna(P3) = ((P3) +Trrpe(Py) = 250+950 = 1200
Trroa(Ps) = (T(py) +Trrog(P3) = 7541200 = 1275

W) = Trraa(Po) = 350
WP, = Trgaa(py) =475
W(Pp3) = Trgaa(py) =950
W(Pps) = Trraa(pz) = 1200

Wy = (0+350+475+950+1200)/5 = 2974/5 = 595

Shortest Job Next

1 wpy)
0 350
I 125

475

2
3250
475 0y75

Trrna(Ps) = ©(py) =75 W(p,) =0

Shortest Job Next

1 T(p;)
0 350
1 125

2 475
3 250
4 75

Trrag(P1) = T(P)+T(p,) = 125+75 = 200

Trrea(Ps) = T(P,) =75

75 v 200

P4

W(p,) =75

W(p,) =0

Shortest Job Next

1 T(py)

0 350

1 125

2 475

3 250

4 75 0 75 200 y 450

P4 | Py P3

Trred(Py) = T(P)+T(P,) = 125475 = 200 W(p,) =75
Trred(Ps) = T(P)+T(P,)+T(p,) = 250+125+75 = 450 W(p,) = 200

Trrna(Ps) = ©(py) =75 W(p,) =0

Shortest Job Next

1 T(p,)
0 350
1 125

475

2
3 250
4

75 0 75 200 450 4 800
Ps| P P3 Pq

TrrudPo) = T(Pe)+T(p3y)+T(p)+T(py) = 350+250+125+75 = 800 W(p,) =450
Trrua(Py) = TP +T(py) = 125+75 =200 W(p,) =75

Torraa(P3) = T(P2)+T(p)+T(P,) = 250+125+75 = 450 W(p,) = 200
Trraa(Ps) = T(Py) =75 W(p,) =0

Shortest Job Next

1 py)

0 350

1 125

2 475

3 250

4 75 0 75 200 450 800 v 1275

Ps| Py P3 Pq P,
Trrud(Po) = TP +T(P3)+T(p)+T(p,) = 350+250+125+75 = 800 W(p,) =450
Trraa(Py) = T(PD+TUP,) = 125+75 = 200 W(p,) =75
Trrna(P2) = T(P)HT(PY)+T(p3)+T(P)+T(py) = 475+350+250+125+75 W(p,) =800
= 1275

Trrna(P3) = T(P3)+T(Pp)+T(P,) = 250+125+75 = 450 W(p,) = 200

Trraa(Ps) = T(Py) =75 W(p,) =0

Shortest Job Next

1
0
1

2
3
4

Trrag(Py) = T(p)+T(p,) = 125+75 = 200

T(p;)
350
125
475
250

75

= 1275

eMinimizes wait time
*May starve large jobs
eMust know service times

0 75 200 450 800 1275
Psa | Py P3 Po %)
TrrodPo) = T(Pe)+T(p3)+T(p)+T(py) = 350+250+125+75 = 800 W(p,) =450
W) =75
Trrud(P2) = T(P)+HT(Py)+T(P3)+T(p)+T(py) = 475+350+250+125+75 W(p,) =800
Trrna(P3) = T(Py)+T(p)+T(py) = 250+125+75 = 450 W(p;) = 200
W(py) =0

Trraa(Py) = TPy =75

Wy = (450+75+800+200+0)/5 = 1525/5 = 305

Priority Scheduling

1275

i T(p,) Pri eReflects importance of external use
0 350 5 *May cause starvation
; 41132 g *Can address starvation with aging
3 250 1
4 75 4 0 250 375 850 925

P P P> Py Po

T 1rnd(Po) = T(Pe)+T(P)+T(P)+T(P,))+T(P3) = 350+75+475+125+250 W(p,) = 925

= 1275

Trrag(Py) = T(p)+T(ps) = 1254250 = 375

Trrua(P2) = T(P)+HT(P)+T(P5) = 475+125+250 = 850

Trroa(P3) = T(p3) =250

Trrnd(Pa) = TP+ T(Py)+ T(Pp)+T(P3) = 75+475+125+250 = 925

Wy = (925+250+375+0+850)/5 = 2400/5 = 480

W(p,) = 250
W(p,) = 375

W(py) =0
W(p,) = 850

Deadline Scheduling

B~ LW = O

T(p,) Deadline

350
125
475
250

75

575
550
1050

(none)
200

*Allocates service by deadline

1275

*May not be feasible
200 550 575 1050
P; [Py Po P> P3
Py| Py | Po P> P3
Py po P | P> P3

Preemptive Schedulers

Preemption or voluntary vield

New Retady Scheduler CPU Done
Process List

= Highest priority process is guaranteed
to be running at all times

» Or at least at the beginning of a time slice

= Dominant form of contemporary
scheduling

s But complex to build & analyze

Round Robin (TQ=50)

1 T(p,)
0 350
1 125
2 475
3 250 O30
4 75 Py

W(py) =0

Round Robin (TQ=50)

1 T(p,)
0 350
1 125

475

2
3 9250 0 100
4 75 Po | Py

W(py) =0
W(py) =50

Round Robin (TQ=50)

1 T(p,)

0 350

1 125

2 475

3 250 0 100
4 75 Po | P | P

W(p) =0
W(p,) = 50
W(p,) = 100

Round Robin (TQ=50)

1 T(p,)
0 350
I 125

2 475
3 250 0 100 200
4

75 Po | Py | Py | P3

W(py) =0
W(p,) =50

W(p,) = 100
W(p;) = 150

Round Robin (TQ=50)

1 T(p,)
0 350
I 125

2 475
3 250 0 100 200
4

75 Po | P | Py | P3| Py

W(py) =0
W(p,) =50

W(p,) =100
W(p;) = 150
W(p,) = 200

Round Robin (TQ=50)

1 T(p,)
0 350
I 125

2 475
3 250 0 100 200 300
4

75 Po | Pr | Py | P3| Ps | Pg

W(py) =0
W(p,) =50

W(p,) =100
W(p;) = 150
W(p,) = 200

Round Robin (TQ=50)

1 T(py)
0 350
1 125

2 475
3 250 0 100 200 300 400 475
4

75 Po | Pr [Py | P3| Psa|Pg | Pr | Py| Pz |Pa

Wi(py) =0
Wi(p,) =50
W(p,) = 100
W(py) = 150
Trpoa(Ps) = 475 W(p,) = 200

Round Robin (TQ=50)

1 T(p,)
0 350
1 125

2 475
3 250 0 100 200 300 400 475 550

4 75 Po | Py [Py [P3| Pa| Po| Py | Py P3|Paf PolPy

W(py) =0
Trraa(py) =550 W(p,) =50

W(p,) =100

W(py) = 150
Trrna(Ps) =475 W(p,) =200

Round Robin (TQ=50)

1 1(p)
0 350
1 125

2 475
3 250 0 100 200 300 400 475 550 650
4

75 Po 1| P | Pp | P3 [Ps [Pg | Py | Po| P3 [Pa] Pg [P1] Py | P3

650 750 850 950
Po | P> [P3| Po | Pr| P3

Wi(py) =0
Trraa(P1) =550 W(p,) =50

Wi(p,) = 100
Trraa(P3) =950 W(p,) =150

Trraa(ps) =475 W(p,) =200

Round Robin (TQ=50)

1 T(py)
0 350
1 125

2 475
3 250 0 100 200 300 400 475 550 650
4

75 Po 1| P | Pp | P3 [Ps [Pg | Py | Po| P3 [Pa] Pg [P1] Py | P3

650 750 850 950 1050
Po | Pp [P31 Po [Pr [P3| Pol Py Pg

Trrua(Po) = 1100 W(p,) =0

Trraa(P1) =550 W(p,) =50
W(p,) = 100

Trrua(P3) = 950 W(p;) =150

Trraa(Ps) =475 W(p,) =200

Round Robin (TQ=50)

1 T(p,)
0 350
I 125

2 475
3 250 0 100 200 300 400 475 550 650
4

75 Po 1| P | Pp | P3 [Ps [Pg | Py | Po| P3 [Pa] Pg [P1] Py | P3

650 750 850 950 1050 1150 1250 1275
Po [Py [Pz [Pop [Py | P3| Pog |l Py | Pog|l Py Pr| Py [Py

Trrna(Po) = 1100 Wi(py) =0
Trraa(P1) =550 W(p,) =50
Trrua(Py) = 1275 W(p,) =100
Trrua(P3) = 950 W(p;) =150

Trraa(Ps) =475 W(p,) =200

Round Robin (TQ=50)

i T(p,) *Equitable

0 350 *Most widely-used

1125 *Fits naturally with interval timer

g ;Z(S) 0 100 200 300 400 475 550 650
4 75 Po | Py | P> [P3| Ps| Po| Py | Py P3|Paf Pol|Pi]| Po]| Py

650 750 850 950 1050 1150 1250 1275
Po [Py [Pz [Pop [Py | P3| Pog |l Py | Pog|l Py Pr| Py [Py

Trrna(Po) = 1100 Wi(py) =0
Trraa(P1) =550 W(p,) =50
Trrua(Py) = 1275 W(p,) =100
Trrua(P3) = 950 W(p;) =150
Trrua(Ps) =475 W(p,) =200

Trgogave = (110045504+12754950+475)/5 = 4350/5 = 870
W, = (0+50+100+150+200)/5 = 500/5 = 100

RR with Overhead=10 (TQ=50)

i 1(p) *Overhead must be considered
0 350
1 125
2 475
3 250 O 120 240 360 480 540 575635 670 790
4 75 POIP1IP2IP%IP4IP0IP1IP2IP%IP4IP0IP1IP2IP%I
790 910 1030 1150 1270 1390 1510 1535
PoleIPzIPoIPzIP%IP0IP2IP0|P2IP2IP2IP2
Trrua(Po) = 1320 W(p,) =0
Trrua(Py) = 660 W(p,) =60
Trroa(P,) = 1535 W(p,) =120
Trraa(Ps) = 1140 W(p;) =180
Trroa(Ps) = 565 W(p,) =240

Trgodave = (13204660+1535+1140+565)/5 = 5220/5 = 1044
W, = (0+60+120+180+240)/5 = 600/5 = 120

Multi-Level Queues

Preemption or voluntary vield

New —

—>
Process

—* Ready List,

Ready List,

—” Ready List,

il

Scheduler @ Done

*All processes at level 1 run before
any process at level j
*At a level, use another policy, e.g. RR

Ready List,

:

Contemporary Scheduling

= Involuntary CPU sharing -- timer interrupts

» [ime guantum determined by interval timer --
usually fixed for every process using the
system

=« Sometimes called the &ime slice length

» Priority~based process (job) selection
» Select the highest priority process
= Priority reflects policy

s With preemption

= Usually a variant of Multi-Level Queues

BSD 4.4 Scheduling

= Involuntary CPU Sharing
= Preemptive algorithms

= 32 Multi-Level Queues

» Queues 0-7 are reserved for system
functions

» Queues 8-31 are for user space functions

» nice influences (but does not dictate)
queue level

UNIX Scheduler

Taken from Modern Operating Systems, 2" Ed, Tanenbaum, 2001

Highest
riorit
priority : R]-’_, T
-4 Waiting for disk /0 — O Process waiting
-3 Waiting for disk buffer in kernel mode
-2 Waiting for terminal input

-1 Waiting for terminal output —CO

0 Wiaiting for child to exist Y
0 User priority O 1
1 User priority 1 —CO—O

o Process waiting
2 User priority 2 in user mode
S User priority 3 —Q

~
~

X ~7
Lowest

priority Process queued
on priority level 3

«

The UNIX scheduler is based on a multilevel queue structure

Process Life Cycle

Job Process
Scheduler Scheduler

Dark square contains fixed, maximum number of processes

Job and Process Scheduler

Job Scheduler

e Controls when jobs will be allowed to contend the CPU

e Most popular techniques
FIFO First in, first out
SJF Shortest job first

Process Scheduler

e Controls when individual jobs (processes) will actually get the CPU
e Only interesting in multi-programming

e Most popular technique is Round Robin

e Give each process one time slice in turn until complete

Turnaround and Weighted
Turnaround Time

Let: N be number of jobs
A be arrival time of i-th job

F; be finish time of i-th job
Turnaround time for ith job: T, = F; - A
Average turnaround time for it" job: T=2XT;/ N

Weighted turnaround time for ith job:
WTi = (Fi - Ai) / (Service-time)i

Average Weighted Turnaround time:
WT =X WT, /N

Processor Sharing (PS)
“Theoretical” Scheduling Algorithm

= Limit of RR as time quantum goes to zero.

s Like giving each CPU cycle to a different
process, in round robin fashion.

= /Vprocesses scheduled by PS
» Each job runs on dedicated N-fold slower CPU.

= Thus, READY = RUNNING.

s CPU Time “shared” equally among processes

Scheduling Example 2

Assume:
Multiprogramming FIFO Job Scheduling

Processor Sharing Process Scheduling

Job Arrives Run Time
1 10.0 0.3
2 10.2 0.5
3 10.4 0.1
4 10.5 0.4
5 10.8 0.1

Definitions

Number processes in ready queue before

this event
Current event:
A=Arrival
S=Schedule Reduction in run time that each process
F=Finish in ready queue experiences since last
H=In HoldQ event occurred
Current
time Remaining run time of each
process in ready queue
Time Event # Jobs Headway Time Left

Example 2 Continued

Time Event # Jobs Headway Time Left

10.0 1AS 1 0.3
10.2 2 AS 1 0.2 1 0.1
2 05
10.4 1F 2 0.1 2 04
3AS 3 041
10.5 4 A,S 2 0.05 2 035
3 0.05
4 0.4
10.65 3F 3 0.05 2 0.3
4 0.35

Example 2 Continued...

Time Event # Jobs Headway Time Left

10.8 5A,S 2 0.075 2 0.225
4 0.275
5 0.1

11.1 5F 3 0.1 2 0.125
4 0.175

11.35 2F 2 0.125 4 0.05

1140 4F 1 0.05

T and W for Example 2

Job Run Start Finish Ti WTI
1 0.3 10.0 10.4 0.4 1.33

2 0.5 10.2 11.35 1.15 2.3
3 0.1 10.4 10.65 0.25 2.5
4 0.4 10.5
5

0.9 225
0.1 10.8 03 3.0
3.0 11.38
T=06 WT = 2276

Check: \/

Because CPU was never idle, 1.4 + 10.0 must equal time of last event (11.4)

Scheduling Example 4

Assume:
FIFO Job Scheduling 100 K Main Memory
5 Tape Drives Processor Sharing Process Scheduling

Job Arrives RunTime Memory Tapes

1 1.0 0.5 30 2
2 1.2 1.0 50 1
3 1.3 1.5 50 1
4 1.4 2.0 20 2
5 1.7 0.5 30 3
6 2.1 1.0 30 2

Example 4 Continued

Time Event # Jobs HWay MM Tapes Time Left

1.0 1AS 70 3 1 05
1.2 2AS 1 0.2 20 2 1 0.3
2 1.0
1.3 3AH 2 0.05 20 2 1 0.25
2 0.95
1.4 4 A,S 2 0.05 0 0 1 0.2
2 0.9
4 2.0
1.7 5AH 3 0.1 0 0 1 0.1
2 038
4 1.9
2.0 1F 3 0.1 30 2 2 0.7
4 1.8

Example 4 Continued ...

Time Event # Jobs HWay MM Tapes Time Left

2.1 O6AS 2 0.05 0 0 2 0.65

4 1.75

6 1.0

4,05 2F 3 0.65 50 1 4 1.1

3S 0 0 6 0.35

3 1.5

51 ©6F 3 0.35 30 2 4 0.75

3 1.15

6.6 4F 2 0.75 50 4 3 04

58S 20 1 5 0.5

74 3F 2 0.4 70 2 5 0.1
75 O5F 1 0.1 100 5

T and W for Example 4

Job Run Arrives Finish

1 0.5
1.0
1.5
2.0
0.5
2.1

oo O &~ W N

1.0
1.2
1.3
1.4
1.7
2.1

2.0
4.05
7.4
6.6
7.5
5.1

T =399 WT = 435

o W
1.0 2.0
2.85 2.85
6.1 4.06
52 2.6
5.8 11.6
3.0 3.0
23.95 26.11

