Chapter 6

Process Management

b

OS organization

Process and
resource
manager

File
Manager
Memory
Manager

Device
Manager

‘ Proccssor(s)l ‘ Main McmoryI ‘ Devices I

Fall 1999 : CS 3204 - Arthur

Process Management Tasks

|
= Define & implement the essential characteristics of a
process and thread

= Algorithms to define the behavior

» Data structures to preserve the state of the
execution

= Define what “things” threads in the process can
reference — the address space (most of the “things”
are memory locations)

= Manage the resources used by the processes/threads

= Tools to create/destroy/manipulate processes &
threads

Fall 1999 : CS 3204 - Arthur 3

Process management (...ctd)

= Tools to time-multiplex the CPU — Scheduling the
(Chapter 7)

= Tools to allow threads to synchronize the operation
with one another (Chapters 8-9)

» Mechanisms to handle deadlock (Chapter 10)

Fall 1999 : CS 3204 - Arthur

Introduction

|
= Scenario

=« One process running
= One/more process performing I/O
= One/more process waiting on resources

= Most of the complexity stems from the need
to manage multiple processes

Fall 1999 : CS 3204 - Arthur 5

Introduction

Process Manager
= CPU sharing
= Process synchronization
= Deadlock prevention

Fall 1999 : CS 3204 - Arthur

Process Manager Overview

Program @

‘ Abstract Computing Environment u

File Deadlock JJ| Process |
Manager Description
Synchronization Process

Device | | Memory
Manager | | Manager

Scheduler I

Resource
Manager
.

I
Devices ”Memory l', J CPU I ‘Other H/WI .

Process components

Program

= defines behavior
= Data

Resources

Process Descriptor
= keeps track of process during execution

Process Descriptor

FiELD DESCRIPTION

Ifernal proesss ame An internal name of the process, such as an integer or fable index,
used in the operating system code.

State. The process's current state.
Owner A proc
sdantif

for storing 11

ntificd by the owner's internal
1in name). The doscriptor contains a field

Parent procs A poinler Lo (he process descriptor of this process's parent.
a

List of child procoss
descriptors

A pointer to a list of the child processes of this provess.

o5 hield by the process. Each
aumber of units of the

List of reusable. A pointer to a list o
resources resource type will &

List of conmumable Similar (o U rewsuble resource list (see Section 6.3.2).

) Hile deseriptors A spoclal case of the reusable resource list.

Message queue A special case of the comsumabla resotros st

Protection domamn A description of = currently held by the process (see
Chapter 1

2
A copy of each of the CPU status registers at the [ast time the pravcss
exited the running state.

£PU status register

A\ copy ol each of the CPU general registors at the last tme the process
exited the ranning state

Fall 1999 : CS 3204 - Arthur 9

Fall 1999 : CS 3204 - Arthur 8
Process Address Space
]
= Defines all aspects of process computation
= Program
= Variables
= Address space is generated/defined by
translation
Fall 1999 : CS 3204 - Arthur 10

| Creating an executable program

Separate objects
(=]
Modules

each relative to 0

Relocatabl
I One large program

Modules

Link Editor

Y - (X+Y)

Absolute
Program

Executable
Loader Program

L Maps relative address space to physical
memory location

Relocates modules one behind other

= Relocates addresses of all but first

= Resolves external reference to
library calls and external modules

N

Generates separate
object code modules

Fall 1999 : CS 3204 - Arthur 1

Basic Memory Hierarchy

Fastest ‘r &

My

; Ry

Cache memory

Access Speed

Primary Memory, M,

Secondary Memory, M,

Slowest

Fall 1999 : CS 3204 - Arthur

Basic Memory Hierarchy...

= At any point in the same program, element can be in

= Secondary memory Ms
= Primary memory Mp
= Registers Mr

= Consistency is a Problem
» Ms#Mp#Mg (code vs data)
= When does one make them consistent ?
= How?

Fall 1999 : CS 3204 - Arthur 13

Consistency Problem

= Scheduler switching out processes — Context Switch
= Is Instruction a Problem ???

= NO

= Instructions are never modified

= Separate Instruction and Data space

= Therefore, Mg; = Mp; = Ms;

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur 14

Consistency Problem...

= Is Data a Problem ???
= YES
= Variable temporarily stored in register has value added to it
= Therefore, Mg; # Mp;

= On context switch, all registers are saved
= Therefore, current state is saved

Fall 1999 : CS 3204 - Arthur 15

Sample Scenario...

|
= Suppose ‘MOV X Y’ instruction is executed

= DMp, = Ms,

= On context switch, is all of a process’ memory
flushed to Ms?

= No, only on page swap
= Hence, envprocess = (Mr +Ms) + (...)

= Note:
= Flushing of memory frees it up for incoming process
=> Page Swap

Fall 1999 : CS 3204 - Arthur 16

Process States

= Focus on Resource
Management & Process
Management Running

Done

request

= Recall also that part of the ERQRRRD
process environment is its Start
state

Blocked Ready

State Transition Diagram

Fall 1999 : CS 3204 - Arthur 17

Process States...

When process enters ‘Ready’ state, it must
compete for CPU. Memory has already
been allocated

Running

Process has CPU Done

request

Process requests resource that is request g . @
immediately available >NO blocking

Process requests resource that is NOT yet Blocked @ Ready
available

State Transition Diagram
Resource allocated,

memory re-allocated?

OIECIEORONCS.

Fall 1999 : CS 3204 - Arthur 18

| Resources & Resource Manager
I

= 2 types of Resources
= Reusable (Memory)
= Consumable (Input/Time slice)

Request

v Resource Queue

Process requesting resource unit(s)
> Get it, or
- Block => Stay in Queue

Units of Resource R
Resource Pool

Fall 1999 : CS 3204 - Arthur 19

Resource Descriptor

Each Resource R has a Resource Descriptor associated
with it (similar to the process)

=> there is a "Status” for that Resource, and
=> a Resource Manager to manage it

rais Ur a nESUUILY DESLLIPLOL

FIELD DESCRIPTION

Internal resource | An internal name for the resource used by the operating system code.

name | lev/...

Total units The number of units of this resource type configured into the system. g,

* Available units ‘The number of units currently available. 3
List of available

The set of available units of this resource type that are available for use by
units processes.

AB,C
List of blocked ‘The list of processes that have a pending request for units of this resource
processes | type Only if * = 0

Fall 1999 : CS 3204 - Arthur

Process Hierarchy

shell

= Conceptually, this is the way in which we would like
to view it

= Root controls all processes i.e. Parent

Fall 1999 : CS 3204 - Arthur 21

20
Creating Processes
Parent Process needs ability to
= Block child
= Activate child
= Destroy child
= Allocate resources to child
= True for User processes spawning child
= True for OS spawning init, getty, etc.
= Process hierarchy a natural,
if fork/exec commands exist
Fall 1999 : CS 3204 - Arthur 22

Factoring in additional Control Complexities

= Recall:
= A parent process can suspend a child process

= Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

= We need 2 more states
= Ready suspended
= Blocked suspended

Fall 1999 : CS 3204 - Arthur 23

Process State diagram reflecting Control

- Not blocked
- Not suspended
- Has memory

- Not suspended
- No memory

Runnin
Done =

request

suspend

Schedule

. suspend ;i
= =

ctive readySuspended
Allocate

- Not Blocked
Suspended
- No memory

request

Start

activate

suspend ~ - Blocked
.4 activate - Suspended
blockedActive blockedsuspended - No memory

Fall 1999 : CS 3204 - Arthur 24

Give it a thought...

Why can a process NOT go from
‘Ready Active’ to ‘Blocked Active’
or ‘Blocked Suspended’ ?

Fall 1999 : CS 3204 - Arthur 25

* Process Management under Linux

=

Mir Farooq Ali

Processes in Linux

= Also called tasks

= Task table or process table defined in
src/linux/include/sched.h

extern struct task_struct
*pidhash [PIDHASH_SZ];

= Can also be accessed as a doubly-linked
list p->next_task and p->prev_task

Fall 1999 : CS 3204 - Arthur 27

Process or task descriptor

= Called task_struct
» Present in src/include/linux/sched.h
= Contains various fields to indicate
= state
= priority
= pointers to parent, children, other tasks in pid list
tty
memory location
file descriptors

Fall 1999 : CS 3204 - Arthur 28

Process States

= Linux identifies following states
1. TASK_RUNNING

2. TASK_INTERRUPTIBLE

3. TASK_UNINTERRUPTIBLE

4. TASK_ZOMBIE

5. TASK_STOPPED

6. TASK_EXCLUSIVE

Fall 1999 : CS 3204 - Arthur 29

Process Creation

= Remember in traditional UNIX, we use
fork() and then typically exec()

= fork() duplicates resources owned by
parent for child process and copies
them to new address space

= This method is slow and inefficient,
since exec() wipes out address space
anyway

Fall 1999 : CS 3204 - Arthur 30

Process creation in Linux

I
= Copy On Write technique

= Lightweight processes
= vfork()

Fall 1999 : CS 3204 - Arthur 31

Copy-on-write
|

= Child pages are pointers to parent
pages

= If child makes a change to a page, a
new copy is made for the child

= This way, you avoid making separate
copies of pages unnecessarily

Fall 1999 : CS 3204 - Arthur 32

Lightweight processes
|

= Allow parent and child processes to
share many kernel data structures

= created in Linux by function called
_ clone()

= uses non-standard clone() system call

Fall 1999 : CS 3204 - Arthur 33

vfork()

= Creates a process that shares memory
address of parent

= Parent is blocked until child exits or
executes a new program by doing
exec()

Fall 1999 : CS 3204 - Arthur 34

User view of processes

= Can use ps command with various
options, for example,
= PS —aux
= ps —ef

Fall 1999 : CS 3204 - Arthur 35

/proc file system

= process information pseudo file system
= DO man proc to get more info
= /proc directory contains

» Numerical subdirectory for each running
process

= A number of other files containing kernel
table information

Fall 1999 : CS 3204 - Arthur 36

/proc... continued

= Files include
= cpuinfo — contains CPU specs

= uptime — time in secs since machine was
last rebooted and idle time since then

= version — kernel version

= loadavg — Load average of machine over
the past 1, 5 and 15 minutes

Fall 1999 : CS 3204 - Arthur 37

Process directories

= One subdirectory for each running process
= Files include

= cmdline
= cwd

= environ
= €Xe

= fdm

= map

= mem

= root

Fall 1999 : CS 3204 - Arthur 38

References

= Linux Kernel 2.4 internals, Tigran
Aivazian http://www.tldp.org/LDP/Iki/

= Modern Operating Systems, 2" Ed., A.
Tanenbaum

= Understanding the Linux Kernel, D.
Bovet, and M. Cesati

Fall 1999 : CS 3204 - Arthur 39

