Chapter 4

»

Computer Organization

=

Program Specification

Source
int a, b, ¢, d;
Assembly Language

a=b+c; i Code for a =b + c

d =a - 100; load R3,b
load R4, c
add R3,R4
store R3,a

; Code for d = a - 100

load R4,=100
subtract R3,R4
store R3,d

CS 3204 - Arthur 2

Machine Language

Assembly Language

; Code for a = b + ¢

load R3,b .
load R4, c Machine Language
add R3,R4 10111001001100..1
store R3,a 10111001010000..0
10100111001100..0
; Code for d = a - 100 10111010001100..1
load R4,=100 10111001010000..0
subtract R3,R4 10100110001100..0
store R3,d 10111001101100..1

CS 3204 - Arthur

Von Neumann Concept

= Stored program concept

= General purpose computational device driven by
internally stored program

= Data and instructions look same i.e. binary

= Operation being executed determined by HOW we
look at the sequence of bits

= Fetch
= Decode View bits as instruction
= Execute

Ny

Data might be fetched as a result of execution

CS 3204 - Arthur 4

Von Neumann Architecture

FIGURE 4.2

. ALU Cemiral Processing Unt (PO

« Control Unit AR rw I
1/0O Buses — — —
Memory Unit _fr b I T ®
Devices

Device Controller
Primary Memory Unit el

and
(Executable Memory) i

Device

CS 3204 - Arthur

| Von Neumann Machine Architecture
I

CPU = ALU + Cntrl Unit

ALU B Cntrl Unit
The von Neumann Machine Architecture
- 5 - fetch
- Functional Unit Central Processing Unit (CPU) - - decode
+ Instruction set

> : g Arithmetic-Logical Unit 5 - execute

+ Arithmetic & Logic L “mu,, I \ coneliintc ALU
-_Registers e o i
+ Intermediate storage L | _Address Bus L [
T &0 h g L

o R 1 paasus | T

Address Bus / Data Bus wires
over which Instr / data is
Buses transferred from memory to ALU

Von Neumann Bottleneck

CS 3204 - Arthur 6

CPU: ALU Component

FIGURE 4.3
A Generic Arithmetical-logical Unit

Right Operand

Left Operand

b
General|Registers Eunction|unit Status Registers,

Result

= Assumes instruction format: OP code, LHO, RHO
= Instruction / data fetched & placed in register
= Instruction / data retrieved by functional unit & executed
= Results placed back in registers

= Control Unit sequences the operations

CS 3204 - Arthur 7

Program Specification (revisited)

Source
int a, b, ¢, d;
Assembly Language

a=>b + c; ——; Code for a

b+ c
d =a - 100; load R3,b
load R4, c

add R3,R4
store R3,a

; Code for d = a - 100

load R4,=100
subtract R3,R4
store R3,d

CS 3204 - Arthur 8

CPU: Control Unit Component

I PCf> Progran_1 Count_er
The PC, IR, and Memory IR => Instruction Register

Fetch Unit

BC 3050 | load R3,b 3046
Von Neumann - i
E ti C | Decode Unit load R4, c 3050
xecution Cycle 5
3 | EET add__R3 R4 | 3054
P

Execute Unit

Control Unit Primary Memory

= Fetch Unit

= Get instruction at location pointed to by PC and place in IR
= Decode Unit

= Determine which instruction & signal hardware that implements it
= Execute Unit

= Hardware for instruction execution (could cause more data fetches)

CS 3204 - Arthur 9

Fetch — Execute cycle

The Fetch-Execute Cycle
PC = <machine start address>;
IR = memory [PC] ;
haltFlag = CLEAR;

while (haltFlag not SET during execution) (
execute (IR) ; Decode(IR)
BC = BC + 1:
/ IR = memory [EC]:
5
Fetch
CS 3204 - Arthur 10

OS boot-up...

= How does the system boot up ?
= Bootstrap loader
= 0OS
= Application

CS 3204 - Arthur 1

A Bootstrap Loader

The power-up sequence / Address of BS Loader

load PC, FIXED_LOC

Where FIXED_LOC addresses the bootstrap loader (in ROM).

The bootstrap loader has the form:

load R1, =0

load R2, = LENGTH_OF_TARGET Fetch
loop: read R1, FIXED_DISK_ADDRESS| Rea;ls Decode

store R1, [FIxep_pest, r1] [OSiN

K Execute

incr R1

bleg R1, R2, loop

br FIXED_DEST \

Branches to OS

CS 3204 - Arthur 12

Memory Unit

The von Neumann Machine Archiecture
Central Processing Unit (CPU)
Arhmetic-Logical Ui e
)
Memory - . .
Unit 1 | T
) o B P

oqta Bus I T

Device Controller

Primary Memory Unit

d
(Executable Memory) 2

Device

CS 3204 - Arthur 13

Memory Unit

= Memory Unit contains
= Memory
= Instructions & Data
= MAR (Memory Address Register)
= MDR (Memory Data register)
= CMD (Command Register)
= Get instruction at location pointed to by PC and placg in IR

L z
@ Bus | T

Device Controller
and
Device

Primary Memory Unit
(Executable Memory)

CS 3204 - Arthur 14

Memory Access

» Read from Memory EE—
The Memory Organization
= MAR € MemAddr

= CMD € ‘Read op’ (from IR)

Device & Device Controller

= Execute MAR

MDR € Mem[MAR]
MDR

= Write to Memory e
» MAR € MemAddr | L
» cvD € ‘write op’ (from IR)
= Execute
Mem[MAR] € MDR !
€S 3204 - Arthur 15

orem—

'von Neumann Machine Architecture

- = Device &
Central Processing Unit (CPU)

Device
Arithmetic-Logical Unit ContaTURIE Controller
(ALU) In Os
1

I I I
T T Addrcss bus - 1 1
B € P

¢

—|7 ']' Data Bu;

Primary Memory Unit
(Exccutable Memory)

-

Device Driver

Device Controller

/ Device

Interfaces

Device Controller
and
Device

CS 3204 - Arthur 16

Device Controller-Software Relationship

The Device-Controller-Software Relationship

Application Software

High-Level Device driver
'O Machine

PCI

Standard Interface
Device Controller

{ }scst

Device

CS 3204 - Arthur 17

Device Controller Interface

Driver interrogated these
/ to check status of device

The Device Controller Interface

[T Busy [Done [Emorcode | - |

Driver places .
command if Interface to driver

status “Done”

[patan-1 |

CS 3204 - Arthur 18

| Device Controller

= Device controller is a processor and allows 2 parts of
the process to proceed concurrently

Program Controller
write Prints info
CS 3204 - Arthur 19

| Device Driver Interface
[

Interface presented by
Driver to Application
program thru OS

OS could provide higher level
operations to application than the
one Driver presents to it

write(...)

!

Terminal Printer Disk
Controller/Driver Driver Driver Driver
Interface ——— | [
Terminal Printer Disk
. Controller Controller Controller
Controller/Device |
Interface | |
Terminal | | Printer | | Disk |
CS 3204 - Arthur 20

How do interrupts factor in ?

= Scenario (1)
= Program:
while device_flag busy {}

=> Busy wait - consumes CPU cycles

= Scenario (2)

= Program:
while (Flag != write) {
sleep(X)

}
=>If write available while program sleeping - inefficient

CS 3204 - Arthur 21

How do interrupts factor in ? ...

|
= Scenario (3)
= Program: Driver:

issues “write” = Suspend program until
write is completed,

then program is
unsuspended

This is Interrupt-driven

CS 3204 - Arthur 22

Interrupts Driven Service Request

= Process is suspended only if driver/controller/device
cannot service request

= If a process is suspended, then, when the suspended
process’ service request can be honored
= Device interrupts CPU
= OS takes over
= OS examines interrupts
= OS un-suspends the process

= Interrupts
= Eliminate busy wait
= Minimizes idle time

CS 3204 - Arthur 23

Interrupts ...

Interrupt Handler in OS: disables interrupts

Interrupt processed

enables interrupts

What if multiple devices (or 2" device) sends
interrupt while the OS is handling prior interrupt ?

If priority of 2nd
interrupt higher than Resumption of

1st then 1st interrupt 2nd interrupt handled handling 1st
suspended |:> Interrup! :> interrupt

CS 3204 - Arthur 24

Control Unit with Interrupt (H/W)

PC = <machine start address>;

IR = memory[PC];

haltFlag = CLEAR;

while (haltFlag not SET) {

execute (IR) ;

PC = PC + sizeof (INSTRUCT);

IR = memory[PC];

if (InterruptRequest) {
memory[0] = PC;
PC = memory[1l]

Vi

memory[1] contains the address of the interrupt handler

CS 3204 - Arthur 25

Interrupt Handler (Software)

interruptHandler () {
q saveProcessorState () ;
for (i=0; i<NumberOfDevices; i++)
if (device[i].done) goto deviceHandler (i) ;
/* something wrong if we get to here .. */

deviceHandler (int i) {
finishOperation();
returnToScheduler () ;

CS 3204 - Arthur 26

A Race Condition

saveProcessorState () {
for (i=0; i<NumberOfRegisters; i++)

Revisiting the t rap Instruction (H/W)

memory [K+i] = R[i];
for (i=0; i<NumberOfStatusRegisters; i++)
memory [K+NumberOfRegisters+i] = StatusRegister[i];
}
PC = <machine start address>;

IR = memory[PC];
haltFlag = CLEAR;
while (haltFlag not SET) {
execute (IR);
PC = PC + sizeof (INSTRUCT);
IR = memory[PC];
if (InterruptRequest && InterruptEnabled) {
disablelInterupts();
memory[0] = PC;
PC = memory[1l]

CS 3204 - Arthur 27

executeTrap (argument) {
setMode (supervisor) ;
switch (argument) {
case 1: PC = memory[1001]; // Trap handler 1
case 2: PC = memory[1002]; // Trap handler 2

case n: PC = memory[1000+n];// Trap handler n
bi

= The trap instruction dispatches a trap
handler routine atomically

= Trap handler performs desired processing
= "A trap is a software interrupt”

CS 3204 - Arthur 28

Requesting Service from OS

"

= Kernel functions are invoked by “trap

Interrupt
Handler

= System call
= Process traps to OS Interrupt Handler
= Supervisor mode set
= Desired function executed
= User mode set
= Returns to application

CS 3204 - Arthur 29

Requesting Svc: System Call

FIGURE 3.3

Procedure Call and Message Passing

System call

CS 3204 - Arthur 30

Steps in making a system call

‘ Taken from Modern Operating Systems, 2" Ed, Tanenbaum, 2001 ‘
Address

Return to caller Libeary
Trap 1o the kernel procedure
5| Put code for read in register

read

User program
calling read

User space

Increment SP__11
Call read

3 Pushid

2| Push abufer

Push nbytes

Kernel space
(Operating system)

Sys cal
handler

o

There are 11 steps in making the system call read (fd, buffer, nbytes)

CS 3204 - Arthur 31

