Windows 2000 and Linux Memory

| Windows 2000 OS structure

Service
process

[System interface (NT DLL.DLL) |

[Posix program | [Win32 program | [Os/2 program |

> win32 |« os2 l |

[Posix sub:

System services

Executive }—’

10 mgr

Object ity| Cache| PnP | Power | Config| LPC | Win32
mgr | mgr | mgr | mgr [mgr | mgr | mgr | mgr | mgr | GDI

Video
@] | Kernel b

Hardware Abstraction layer (HAL)

Hardware

= Executive is architecture independent part of the OS

= Memory Manager is one part of this executive

CS 3204: Operating Systems, Fall 2002

April 9, 2003 © Mir Farooq Ali, 2002

~— Kernel mode —» <— Usermode —>

Virtual Address Space
Process A Process B Process C
4GB
Nonpaged pool Nonpaged pool Nonpaged pool
Paged pool Paged pool Paged pool

A's page tables B's page tables C's page tables

Stacks, data, etc| Stacks, data, etc Stacks, data, etc
HAL + OS HAL + 0S8 HAL + OS
268 System data [System data System data
Process A's Process B's Process C's
private code private code private code
and data and data and data

Botiom and top
are invalid

64 KB
= Virtual address space layout for 3 user processes
= White areas are private per process

= Shaded areas are shared among all processes

CS 3204: Operating Systems, Fall 2002

April 9, 2003 © Mir Faroog All, 2002

Management
L
1
| Memory Management
. Sophisticated virtual memory (VM) management
= Assumption is that underlying hardware supports
virtual-to-physical address translation, paging, and
other VM features
=« The VM manager in 2000 uses a page-based
management scheme with a page size of 4 KB
= VM manager uses 32 bit addresses, so each process
has a 4 GB virtual address space
= Upper 2 GB are identical for each process and lower 2
GB are distinct for each process
= Two-step memory allocation procedure
1. Reservation a portion of the process’ address space
2. Commitment of the allocation by assigning space in the
OS paging file
CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog Ali, 2002 3
Virtual-Memory Layout
page- page page-
directory directory directory
entry entry
[o 1023
/ \
page- page page- page- page page-
table table 0 table table table 1023 table
entry entry entry entry
0 1023 0 1023
{ ! ! f
4K 4K 4K 4K
page page page page
CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq Ali, 2002 5

| Virtual Memory Manager (Cont.)

= The virtual address translation in 2000 uses several data structures.
= Each process has a page directory that contains 1024 page directory
entries of size 4 bytes.

Each page directory entry points to a page table which contains 1024
page table entries (PTEs) of size 4 bytes.
= Each PTE points to a 4 KB page frame in physical memory.

= A 10-bit integer can represent all the values form 0 to 1023,
therefore, can select any entry in the page directory, or in a page
table.

= This property is used when translating a virtual address pointer to a
bye address in physical memory.

= A page can be in one of six states: valid, zeroed, free standby,
modified and bad.

CS 3204: Operating Systems, Fall 2002

April 9, 2003 © Mir Farooq Ali, 2002

| Virtual-to-Physical Address Translation

31 0

PDE FTE page offset

= 10 bits for page directory entry, 10 bits for
page table entry, and 12 bits for byte offset in
page.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 7

Page File Page-Table Entry

31 0

age address T| P | protection p:‘g:e \

= 5 bits for page protection, 20 bits for page frame address,
4 bits to select a paging file, and 3 bits that describe the
page state. V=0

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 8

|_Page File Page-Table Entry
|

Bits 20 3 111111111
Not W
Page frame used 48|+ DACt ujwlv
G: Page is global to all processes Wt: Write through (no caching)
L: Large (4-MB) page U: Page is accessible in user mode
D: Page is dirty W: Writing to the page permitted
A: Page has been accessed V: Valid page table entry

A page table entry for a mapped page on the Pentium

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 9

Concepts (2)

Fundamental
Backing store on disk
—_——

Process A Process B

Stack Stack
Region {| Data
Data
Shared F
library “\\‘
Lbdl T~ ETER]
s “e~o_ | library
Program : -
E | Program

'0g2.exe

R B Prog1.exe Prog: .
= Mapped regions with their shadow pages on disk
» The /ib.dllfile is mapped into two address spaces at same time

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 10

| Memory Management System Calls

Win32 API function Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region

VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)

VirtualUnlock Make a region pageable in the usual way

CreateFileMapping Create a file mapping object and (optionally) assign it a name
| MapViewOfFile Map (part of) a file into the address space

UnmapViewOfFile Remove a mapped file from the address space

OpenFileMapping Open a previously created file mapping object

The principal Win32 API functions for mapping virtual
memory in Windows 2000

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 1

rogrammer Interface - Memory Management

= Virtual memory:

VirtualAlloc reserves or commits virtual
memory.

VirtualFree decommits or releases the memory.
= These functions enable the application to determine
the virtual address at which the memory is
allocated.
= An application can use memory by memory
mapping a file into its address space.
= Multistage process.

= Two processes share memory by mapping the same
file into their virtual memory.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 12

Physical Memory Management (1)

Zero page needed (8)

Page read in (6)

Soft page fault (2)

Top
Standby Free Zeroed
page page page
Modified | 1St |Deall list |7er0 list
page page
writer(4) thread (7)
Bottom
Page evicted from a working set (1) Process exist (3)

The various page lists and the transitions between them

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 13

| Physical Memory Management (2)

| Page frame database

Page tables
State Cnt WS Other PT Next
,,,,,,,, >
14 | Clean —TX =
13 [Dirty, X
List headers 12 [Clean
11 [Active 20 i i D
10 [Clean
9 [Dirty B
8 | Active 4 D
[Modifed > 7 [Dirty
6 | Free X
Free —> 5 | Free __)
4 | Zeroed X
3 | Active 6
2 | Zeroed
1 [Active 14)
Zeroed —> O [Zeroed

Some of the major fields in the page frame data base for a valid page

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 14

| Linux Memory Management

= Linux’s physical memory-management system
deals with allocating and freeing pages, groups
of pages, and small blocks of memory.

= It has additional mechanisms for handling
virtual memory, memory mapped into the
address space of running processes.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 15

| Splitting of Memory in a Buddy Heap

8KB 8KB
16KB
4KB
8KB
4KB
CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 16

| Managing Physical Memory

= The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request.
= The allocator uses a buddy-heap algorithm to keep track of
available physical pages.
= Each allocatable memory region is paired with an adjacent
partner.
= Whenever two allocated partner regions are both freed up they
are combined to form a larger region.
= If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request.
= Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator).

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 17

| Virtual Memory

. The VM system maintains the address space visible to

each process: It creates pages of virtual memory on
demand, and manages the loading of those pages
from disk or their swapping back out to disk as
required.

» The VM manager maintains two separate views of a
process'’s address space:

= A logical view describing instructions concerning the layout of
the address space.
The address space consists of a set of nonoverlapping regions,
each representing a continuous, page-aligned subset of the
address space.
A physical view of each address space which is stored in the
hardware page tables for the process.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 18

| Virtual Memory (Cont.)

™ a Virtual memory regions are characterized by:

= The backing store, which describes from where the
pages for a region come; regions are usually
backed by a file or by nothing (demand-zero
memory)

= The region’s reaction to writes (page sharing or
copy-on-write).

= The kernel creates a new virtual address space
1.When a process runs a new program with the exec

system call
2. Upon creation of a new process by the fork
system call
CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq Ali, 2002 19

| Virtual Memory (Cont.)
|

= On executing a new program, the process is given a
new, completely empty virtual-address space; the
program-loading routines populate the address space
with virtual-memory regions.

= Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space.

= The kernel copies the parent process’s VMA descriptors, then
creates a new set of page tables for the child.

= The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented.

= After the fork, the parent and child share the same physical
pages of memory in their address spaces.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 20

| Virtual Memory (Cont.)

. The VM paging system relocates pages of memory

from physical memory out to disk when the memory is
needed for something else.

= The VM paging system can be divided into two
sections:
= The pageout-policy algorithm decides which pages
to write out to disk, and when.
= The paging mechanism actually carries out the
transfer, and pages data back into physical memory
as needed.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 21

| Virtual Memory (Cont.)
|

= The Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of every
process for its own internal use.

= This kernel virtual-memory area contains two regions:

= A static area that contains page table references to every available
physical page of memory in the system, so that there is a simple
translation from physical to virtual addresses when running kernel
code.
The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to point to
any other areas of memory.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Faroog All, 2002 2

| Executing and Loading User Programs

™ a Linux maintains a table of functions for loading

programs; it gives each function the opportunity to try
loading the given file when an exec system call is
made.

= The registration of multiple loader routines allows
Linux to support both the ELF and a.out binary
formats.

= Initially, binary-file pages are mapped into virtual
memory; only when a program tries to access a given
page will a page fault result in that page being loaded
into physical memory.

= An ELF-format binary file consists of a header followed
by several page-aligned sections; the ELF loader works
by reading the header and mapping the sections of the
file into separate regions of virtual memory.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 23

Memory Layout for ELF Programs

kernel virtual memory T memory invisible to user mode code

stack

v
4

memory-mapped region

memory-mapped region

memory-mapped region

¢ the ObrkO pointer
run-time data

uninitialized data
initialized data
program text

forbidden region

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 2

| Static and Dynamic Linking

. A program whose necessary library functions are

embedded directly in the program’s executable binary
file is statically linked to its libraries.

= The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions.

= Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 25

| Acknowledgements

I 1. Silberschatz, et al., Operating System Concepts, 6t Edition,
John Wiley & Sons, Inc, 2003.
2. Tanenbaum, Andew., Modern Operating Systems, 2™ Edition,
Prentice Hall, 2001.

CS 3204: Operating Systems, Fall 2002
April 9, 2003 © Mir Farooq All, 2002 2

