

Last Revision: 10:25 AM 1/30/2001 1

CS 3204 – Operating Systems
Programming Project #1 – Job / CPU Scheduling

Dr. Sallie Henry – Spring 2001
Design Due on 2 February 2001, 23:59:59 PM

Due on 15 February 2001, 23:59:59 PM
(Sign-up sheets available)

Design and implement a program that simulates some of the job scheduling and CPU
Scheduling of an operating system. Your simulator must conform to the criteria
established in these specifications.

The input stream to the program describes a set of arriving jobs and their actions. The
following diagram describes Job and process transitions.

A graphic view of the simulator

When a job arrives, one of two things may happen:

1. If there is not enough free main memory for the job, the job is put in the Hold
Queue to wait for main memory and devices.

2. If there is enough main memory and devices for the job, then a process is created
for the job, the required main memory and devices are allocated for the process,
and the process is put on the Ready queue.

Hold Queue

Submit Queue

Long Queue

Ready Queue

Complete Queue

CPU

A new job

Process Scheduling

Last Revision: 10:25 AM 1/30/2001 2

When a job terminates, the job releases any main memory that it holds. The release of the
main memory may cause the jobs to leave the Hold Queue.
Assume that the Hold Queue is based on the priority. There are three external priorities:
1, 2, 3 with 1 being the highest priority. The priority is only for the Hold Queue.

• Job Scheduler will use preallocation of main memory and devices.
• Job scheduling for queues one and two is Shortest Job First (SJF).
• Job scheduling for queue three is First Come First Served (FCFS).

Process Scheduling will be Limited Round Robin. (To be discussed soon.) Once a job
has accrued 0.6 CPU time, it is considered a long job and may not run until the
Ready/Run is empty. At that time the long queue becomes the Ready queue and Round
Robin is used. A process moving from the Ready Queue to the Long Queue generates
an internal event.

Input Specification

The input to your program will be a text. Each line in the file will contain one of the
commands listed below. Each command consists of a letter in column one followed by a
set of parameters. Each text file contains exactly one type “C” command, which will be
the first of the line. All input will syntactically correct, but you should detect and report
other type of errors. There will always be exactly one blank line after each number in the
input file.

Please check for the following errors, which may occur in the input file.

• The time on a command is always more than the time on an earlier command.

1. System Configuration:

C M=180 L=0.6 D=12 Q=0.1

The example above states that the system to be simulated has a main memory consisting
of 180 memory units; a time excess of 0.6, which determines long jobs; and a time
quantum or time slice as 0.1. It also shows that the system has 12 devices.

2. A job arrival:

A 10.0 J=1 M=50 D=4 R=0.5 P=1

The example above states that job number 1 arrives at time 10 which will require 50 units
of memory and 4 devices and runs for 0.5 seconds. The job arrives with a priority of 1.

3. A display of the current system status in Readable format (with headings and
properly assigned): This is an external event

Last Revision: 10:25 AM 1/30/2001 3

D 11.03

The example above states that at time 11.03, the following should be printed:

1. A list of each job that has entered the system, ordered by job id; for each job, print
the state of the job (e.g. running on the CPU, waiting in the Hold Queue, finished
at time 11.0), the remaining service time for unfinished jobs and the turnaround
time and weighted turnaround time for finished jobs.

2. The contents of each queue.

3. The system turnaround time and weighted turnaround time based on jobs

completed so far.

Assume that the input file has “D <infinity>” command at the end, so that you dump the
final state of the system.

Helpful Hints

Let i denote the time on the next input command, if there is still unread input: otherwise i
is infinity. Let e denote the time of the next internal event, which will be the time at
which the currently running job either terminates or experiences time quantum expiration.
The “inner loop” of your program should calculate the time of next event, which is the
minimum of the i and e. If i = e, then process the internal event before the next
command. Notice that if this is not strictly followed, your results will not match the
expected output to grade your project!

Your simulation must contain a variable to denote the “current time”. This variable must
always be advanced to the time of the next event by a single assignment. (The variable
cannot be “stepped” by a fixed increment until it reached the time of the next event.

Although the input data will use “real” numbers, you must convert them to type int by
multiplying all the real numbers by 1000 (rounded), do your work using integers, and
then convert your results back to real numbers by dividing the appropriate quantities by
1000. I want to think about why this requirement will simplify your programming
considerations. At some point in class we’ll discuss the reason.

You must be careful in constructing an algorithm to read the input file. Suppose the input
file contains “0.2”. If this read will scanf into a float with %f format, the result is
“0.1999999”, whereas the integer desired is “200”. You must devise a way of solving this
problem.

You may also wish to use a .h file; put your #defines, global variables, and global type
and structure definitions in it to improve the code readability.

Last Revision: 10:25 AM 1/30/2001 4

You must turn in the following

• A softcopy of your source code, containing a comment with your name, compiler
name and version, hardware configuration, operating system and version.
NOTICE: You must use standard C++. Do not use machine/compiler dependent
constructs. Your code must compile in McBryde 116 lab.

• A softcopy of the program output on each test data file

• Submit the design (due on 02/02/2001) and the softcopy of the things mentioned

above, to the curator http://spasm.cs.vt.edu:8080/curator/SpasmCurator

Implementation Hints

1. Implement the Ready Queue and Hold Queue as sorted linked lists. On what key
are they sorted?

2. Implement the completion table as an array of size 100; the D command dumps

the process table (Do not confuse this tables with the PCBs.)

3. You will be graded on the part of the maintainability of your code. Therefore use

#define to avoid embedding numeric constants in the code.

4. The end of a time slice is an internal event.

5. When a job’s accrued time exceeds 0.6, an internal event occurs causing the
process to move from Ready Queue to Long Queue.

Other Hints

If there is a completion of a job, check the hold queue before the long queue.

When a job completes, it releases memory and implicitly releases devices. Now check the
Hold Queue and then the Long Queue in that order.

First job in First priority should be checked in hold 1 st.

Priority is only meaningful in the Hold Queue, NOT in the Long Queue.

Priority is job scheduling not process scheduling.

The constraints to move from the Hold Queue to the Ready Queue are main memory
and devices.

Last Revision: 10:25 AM 1/30/2001 5

If more resources are needed than the system contains (NOT available, Actually
contains) then do not even consider the jobs. Print an appropriate message and ‘kick the
job out of the system’. Do not include it in the T or W times.

If jobs have same run-time and same priority, use FIFO.

An event is generated by a process going long.

The display command does not have to list processes and jobs in any certain order.

Handle all internal events before external.

Do not use array of size 100 for jobs.

A display event is external.

Information Hiding is important.

Any new job entering the Ready Queue process sends a Long Queue job back to the
Long Queue (i.e. the Ready Queue must be empty for a job on the Long Queue to run.)

When a process is in a Long Queue, it does not give up its resources.

There will never be two external events at the same time.

Do NOT use a MEGANODE!!! Use information hiding unless you plan on loosing
points.

