
Due: 11:59.59 p.m., Sunday, Apr. 15 1

CS3204 Operating Systems - Spring 2001
Instructor: Dr. Craig A. Struble

Process Synchronization using Semaphores

Assigned: Monday, Apr. 2 Due: 11:59.59 p.m., Sunday, Apr. 15

1 Introduction

Synchronization between multiple processes is fundamental to building modern software.
We see situations where synchronization is needed in client/server software, multi-threaded
implementations of programs, and programs implemented on parallel processing machines.
We covered several techniques for synchronization primitives in class: shared variables,
disabling/enabling interrupts, and semaphores. Given a choice between these three syn-
chronication primitives, semaphores have the best properties overall: atomic test and set
operations, blocking instead of busy waiting, and a queue for waiting processes.

2 Specification

In this assignment, you will use the SYSV implementations of semaphores and shared
memory to implement a solution to Exercise 11 in Chapter 8 of Nutt, our operating systems
textbook. The SYSV semaphores and shared memory implementations are part of the
SYSV IPC (InterProcess Communication) suite available on most modern versions of Unix,
including Linux and FreeBSD.

You are to implement three programs:

• tunnel, which is responsible for setting up shared memory and semaphores, creat-
ing the process for the controller, and creating car processes entering the system.
Executing this process starts the simulation;

• controller, which is responsible for simulating the traffic controller’s behavior in the
problem;

• car, which is responsible for simulating the car’s behavior in the problem.

2.1 Tunnel

You will use fork() and some form of exec() to create child processes of tunnel which
represent the traffic controller and entering cars. The tunnel should simulate entering
cars by introducing new cars at random intervals and heading in a random direction (i.e.,
northbound or southbound). Using srandom(), random(), time(), and sleep() will be
useful for implementing these random intervals and directions.

Your implementation should contain a constant representing the number of cars that
will enter the tunnel. For example, my implementation creates 100 cars at random intervals.
You can vary this constant and car creation rates to see how they impact your programs.
You might want to play with different random distributions for northbound and southbound
cars to see what effect it has on your program.

The tunnel program should exit only after every car has made it through the tunnel.
All child processes should also be terminated at this time (i.e., the controller should stop
running as well).

Due: 11:59.59 p.m., Sunday, Apr. 15 2

2.2 Controller

The controller should be written according to the problem description. In particular, you
must guarantee that your implementation does not suffer from starvation (i.e., if a stream
of northbound cars come in, a southbound car should get a chance to go at some point).
The functions mentioned for the tunnel will also be useful for your implementation of the
controller.

2.3 Car

The car should be written according to the problem description. The car program should
be written so that you can pass the ID and direction of the car as command line parameters.
You should simulate the length of time it takes for a car to pass through the tunnel by
sleeping for random intervals. Cars should be numbered to uniquely identify which car is
in the tunnel.

3 Output

Your car and controller processes should print out messages to standard output (i.e., the
screen) about what is occuring in the simulation. Printing out the following information is
required at a minimum:

• when a car arrives at the tunnel, print the direction the car is heading and the color
of the appropriate light,

• when a car enters the tunnel,

• when a car leaves the tunnel,

• when the controller changes the color of a light (note that there are TWO lights, so
you need to identify which one changed).

You should make sure to include the ID of the car, the direction the car is heading,
and the identity of the light as appropriate in each of your messages. Sample output will
be available on the website, but you should feel free to personalize your messages and to
incorporate more output of interest.

When collecting your sample output, I found it better to use the script command than
to redirect output to a file. The buffering for standard output behaved very differently for
a file than when I used script. It is important to see that only one car is in the tunnel at
a time, and that the car leaves the tunnel before the next car enters.

4 Semaphores

The actual implementation of semaphores in Linux, SYSV semaphores, differ slightly from
what was covered in class. The following sections contain information on using SYSV
semaphores and some guidance on how to map them to the implementations discussed in
class.

Due: 11:59.59 p.m., Sunday, Apr. 15 3

4.1 Preliminaries

In order to use semaphores in your code, the following compiler directives are needed:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

These header files define the types and contain function prototypes for using semaphores.
In the SYSV semaphore implementation, each function call manipulates a set of semaphores
that can be used together in flexible and complicated ways. I recommend that instead of
trying to take advantage of this functionality, that you make set contain only one semaphore.
This maps more easily to the semaphores we discussed in class.

4.2 Creation and Accessing

The semget function is used to obtain a semaphore (set) from the operating system. The
function prototype is

int semget (key_t key, int nsems, int semflg);

where key is an indentifying key that you provide for the semaphore, nsems is the number
of semaphores in the semaphore set, and semflg is flags for permission and creation of the
semaphores. The manual page discusses each parameter in more detail; and I will only
focus on the usage of semget for this assignment.

The key parameter is an integer you provide to identify your semaphore. You will
need to pass this key to any processes that want to access to the semaphore. The nsem
parameter defines the number of semaphores in the set, which should be 1 for this project
(unless you want more of a challenge). The semflg controls the access to the semaphore
by other processes. This access control is similar to file access control in Unix: you can
allow read and/or write access to processes owned by the same user, users in the same
group, or all users. In addition to this control, other flags determine whether or not the
semaphore should be created if it does not exist or whether the existence of the semaphore
with the key is an error. For this assignment, I recommend using IPC_CREAT | 0600 for
the semflg parameter, which creates the semaphore if it does not already exist and only
allows processes owned by you to access the semaphore.

The return value of the semget function is an identifier for the semaphore, which is used
to perform additional operations. This value will be -1 if there is an error, and you should
check for resulting errors in your program. Primarily the error checking is just to identify
any problems you may run into along the way.

So, putting this altogether, to create a semaphore set with one element and key 123,
use the following code:

int semaphore;

semaphore = semget(123, 1, IPC_CREAT | 0600);
if (semaphore == -1) {

/* error occured so print an error message and exit */
perror("semget");
exit(1);

}

Due: 11:59.59 p.m., Sunday, Apr. 15 4

Using the above code will also return an already existing semaphore, so you use it to
access a semaphore in child processes after the semaphore already exists.

4.3 Initialization

To set the initial value of the semaphore, use the semctl function. This function controls
several aspects of semaphores, including the ability to destroy them. In order to use semctl
the following union is needed in your own code to pass arguments to the semaphore control
function (this is due to stupidity in standards that arise sometimes):

#if !defined(_SEM_SEMUN_UNDEFINED) || _SEM_SEMUN_UNDEFINED
/* according to X/OPEN we have to define it ourselves */
union semun {

int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

};
#endif

The prototype for the semctl function is

int semctl(int semid, int semnum, int cmd, union semun arg);

where semid is the semaphore identifier (returned earlier), semnum is the semaphore number
in the semaphore set to modify (should be 0 in your programs), cmd is the command to
execute, and arg is the argument for the command. Each of these are described in detail
in the manual page. The return value is not important, except that -1 represents that an
error occured.

For initialization, the proper command is SETVAL. From the comments for the argument
union, the correct field in the union to fill in is val. So, suppose we want to initialize the
value of our previously created semaphore to 1. Notice that the second parameter is 0 to
modify the first (and only) semaphore in the set. The following code is used:

int rc; /* return code */
union semun sem_val;

/* Initialize the value to 1*/
sem_val.val = 1;
rc = semctl(semaphore, 0, SETVAL, sem_val);
if (rc == -1) {

/* error occured */
perror("semctl");
exit(1);

}

4.4 Updating

This is where the behavior (or at least description of the behavior) changes from semaphores
in class. In class, the P and V operations subtract and add one to the value of the semaphore

Due: 11:59.59 p.m., Sunday, Apr. 15 5

respectively. In SYSV semaphores, you can modify the behavior by any amount and even
check if the value is precisely zero.

If you add a positive number to the semaphore value, the value is updated and the
updating process continues to run without blocking. If you add a negative number n to the
semaphore value v then several possibilities arise:

• if v >= |n|, then n is added to v and the process continues running.

• if v < |n|, then the process is blocked until v >= |n|, at which time n is added to v
and the process continues running.

Given this description, there is no guarantee that a queue is being used to maintain a
list of waiting processes. So you cannot be guaranteed of that behavior. Still, the P and V
operations can be effectively modeled by only using -1 and 1 as the modification values.

To modify the semaphore value, the semop function is used. The prototype for semop
is

int semop (int semid, struct sembuf *sops, unsigned nsops);

where semid is the semaphore identifier, sops is an array of modifications (semaphore
operations) to make to the semaphores in the set, and nsops is the number of modifications
in the array sops. The last value should be 1 in your program. The return value is generally
not important unless it is -1, signifying an error.

The sembuf structure is defined as

struct sembuf
{
short int sem_num; /* semaphore number */
short int sem_op; /* semaphore operation */
short int sem_flg; /* operation flag */

};

where sem_num is the semaphore in the set to modify (should be 0), sem_op is the modi-
fication number to be made (1 or -1), and sem_flg are flags determining whether or not
the process should really block, and whether or not the operation is undone upon process
termination. This last field should be 0 in general.

So, to add one to the semaphore value, use the following code:

struct sembuf sem_op; /* semaphore operation buffer */
int rc; /* return code */

/* Increase the value of the semaphore by 1 */
sem_op.sem_num = 0; /* always one semaphore per set */
sem_op.sem_op = 1; /* increase value by one */
sem_op.sem_flg = 0; /* no special flags */
rc = semop(semaphore, &sem_op, 1);
if (rc == -1) {

perror("semop");
}

Due: 11:59.59 p.m., Sunday, Apr. 15 6

5 Shared Memory

Linux also provides mechanisms for constructing and using a block of memory that is shared
amongst processes. The programmer’s interface to the shared block of memory is the SYSV
shared memory API.

5.1 Preliminaries

To use shared memory, you must have the following compiler directives in your source code:

#include <sys/ipc.h>
#include <sys/shm.h>

These include constants and function prototypes for using shared memory.
In addition, it’s an extremely good idea to define a structure that contains all of the

shared variables for your programs. For example, the following structure will be used to
share two integers and a character array:

typedef struct {
int x;
int y;
char location[20];

} SharedData;

Beware of trying to share classes like this. I don’t think it works properly, but you can give
it a whirl.

5.2 Creation

To create a shared memory segment, the shmget function is used. The prototype for shmget
is

int shmget(key_t key, int size, int shmflg);

where key is the key to use for identifying the shared memory, size is the number of bytes
to allocate in a shared memory segment, and shmflg determines the permissions and other
properties related to the shared memory segment.

The key and flag parameters are essentially the same as for semaphores, so refer to that
section for more information. Again, the key needs to be communicated to all processes
needing access to the shared memory segment. The size field is used to specify the number
of bytes needed in the shared memory segment. The return value is the shared memory
segment identifier that is used in subsequent calls, or -1 if there was an error.

To allocate shared space for our variables in the SharedData structure in a shared
memory segment with key 200, use the following code:

int shmid;
shmid = shmget(200, sizeof(SharedData), IPC_CREAT | 0600);
if (shmid == -1) {

perror("shmget");
exit(1);

}

The same code accesses an already existing shared memory segment (with key 200), so
you can use this code in child processes.

Due: 11:59.59 p.m., Sunday, Apr. 15 7

5.3 Mapping to Address Space

Once the shared memory segment has been created it needs to be mapped into the virtual
address space of the process (question to ponder: why?). The shmat function is used to
map the segment into the process’ address space. The function prototype for shmat is

void *shmat (int shmid, const void *shmaddr, int shmflg);

where shmid is the shared memory segment identifier returned by shmget, shmaddr is the
requested virtual memory address to place the shared memory segment, and shmflg are
flags modifying how the memory segment is loaded. For this project, you should specify an
address of NULL and flags of 0 to allow the function to place the shared memory segment
wherever it can. The return value of the function is the virtual address for accessing the
shared memory segment, or NULL if there was an error.

To map our previous shared memory segment into the process’ address space, use the
code

SharedData *sharedData;
sharedData = (SharedData *)shmat(shmid, NULL, 0);
if (sharedData == NULL) {

perror("shmat");
exit(1);

}

Notice that I casted this address to point to an address location storing something of
type SharedData. This is a useful technique so that the contents of the shared memory
segment can be accessed by field names of sharedData.

5.4 Accessing Shared Variables

Once you have mapped the shared memory segment into the process’ address space, you
can access the shared variables through the pointer returned by shmat. For example, the
following code sets the shared variable x, to the value 25.

sharedData->x = 25;

Now, every process that has accessed and mapped the same shared memory segment
will see the value 25 when accessing x,.

6 Viewing SYSV IPC Remnants

You can see what SYSV IPC resources are currently in use by using the ipcs command.
Some sample output is below.

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x000003e9 8248833 cstruble 600 24 0

------ Semaphore Arrays --------
key semid owner perms nsems status

Due: 11:59.59 p.m., Sunday, Apr. 15 8

0x00000001 1024 cstruble 600 1
0x00000002 1025 cstruble 600 1
0x00000003 1026 cstruble 600 1
0x00000004 1027 cstruble 600 1
0x00000005 1028 cstruble 600 1

------ Message Queues --------
key msqid owner perms used-bytes messages

It’s generally a good idea to clean up after your program executes, which you can do
through proper programming, but I found that painful. So instead, try using the ipcrm
command. For example, to remove the semaphore with semid 1027, the command (and
response) is

% ipcrm sem 1027
resource deleted

Use shm as the first argument to remove shared memory segments.

7 Hints

• To succeed in this project, it will be important to write functions that map the
SYSV semaphores to semaphores that we described in class. Implementing P and V
operations for a semaphore (and defining just what a semaphore is) is vital.

• You don’t need to implement a queue (array or whatever) to simulate cars waiting to
enter the tunnel. Use a semaphore instead.

• There is a useful tutorial on SYSV IPC at the URL http://users.actcom.co.il/
~choo/lupg/tutorials/multi-process/multi-process.html

• Finally, work out your solution on paper. You may get a false belief that your program
works by running it over and over again, but unless you have it all worked out in your
head, you won’t be sure it actually works. I am available for you to ask questions and
for direction when solving the problem.

8 Submission

We will use the Curator, http://ei.cs.vt.edu/~eags/Curator.html to collect program
submissions. The URL for submission is http://spasm.cs.vt.edu:8080/curator/. Only
the servlet interface to the Curator is supported. No grading will be done by the Curator.

You are to submit a single tarred (man tar) and gzipped (man gzip) archive containing

• A text file named README describing the program, describing the contents of the
archive, providing building instructions (including the platform you used for devel-
opment), a user’s guide (including how to start the program), and examples of usage
with your test files;

• The source code for your programs;

• Sample output for 3 executions of your programs;

Due: 11:59.59 p.m., Sunday, Apr. 15 9

• A script named build or a suitable Makefile for building your programs.

Your files must be a directory named project4 of the archive Be sure to include only the
files listed above. Do not include extra files from an integrated development environment
such as configure scripts, automake related files, etc. This is primarily an issue if you are
using KDevelop.

Be sure to include your name in all files submitted. DO NOT include executables or
object files of any type in the archive. Submissions that do not gunzip and/or untar
will not be graded. Be careful to FTP in binary mode if you are transferring
your file to a Windows machine before submitting to the Curator.

Failure to follow the submission rules will result in a grade of zero (0) for
this assignment. There will be no exceptions.

9 Programming Environment

As stated in the syllabus, you must use Linux and gcc/g++ to implement this project.
Your program must compile and run properly in the lab on RedHat 6.2. All data struc-
tures used in your program must be student implemented. Using the standard
template library (STL) or other third party libraries for data structure imple-
mentations is strictly prohibited. Using C++ input and output streams and C++
strings is OK.

