Due: 11:59.59 p.m., Friday, Feb. 23 1

CS3204 Operating Systems - Spring 2001
Instructor: Dr. Craig A. Struble
Tracking Process Creation in Linux

Assigned: Thursday, Feb. 8 Due: 11:59.59 p.m., Friday, Feb. 23

1 Introduction

In the first programming assignment, you learned about using fork and exec to create
processes in Linux. In this assignment, you will implement your own system calls for
tracking the number of processes created and destroyed during the system uptime, the
amount of time the system has been up since the last reboot. You will implement system
calls to allow user processes to access the information your modified kernel trackes.

2 Specification

In this assignment, you will implement a single system call, procstat that returns the
number of processes created or destroyed during the system uptime. The system call will
take one integer parameter, info, which is 0 signifying that procstat should return the
number of processes created, or 1, signifying that procstat should return the number of
processes destroyed. If any other value is passed, procstat should return -1, signifying an
error occured.

Using your newly created system call, you will write a small user program named procs
that prints out the number of processes created or destroyed during a specified time interval.
The command line for procs is

procs samples rate -c | -d

where samples is the number of samples to take, rate is the rate in seconds to sample
process statistics, —c specifies that we want to track the number of processes created and
-d specifies that we want to track the number of processes destroyed. One and only one of
-c or -4 is required as an argument. A usage message should be printed if the program is
not executed with proper arguments.

The output of procs should be repeated lines of process creation/destruction statistics.
Suppose that we take 3 samples of process creation every 5 seconds. An example of expected
output is

Time Created Rate
5 27 5.40
10 33 6.60
15 3 0.60

where the first column is the elapsed time in seconds since starting the program, the second
column is the number of processes created (or destroyed), and the third column is the rate
per second at which processes were created during the last monitoring time (to two digits
of precision following the decimal point). Each column is tab delimited, so they won’t line
up in all cases. When processes are being destroyed, the “Created” header should read
“Destroyed”.

Consider using gnuplot to plot your process statistics graphically.

Due: 11:59.59 p.m., Friday, Feb. 23

3 Implementing System Calls

Recall that system calls are used to transfer execution from user-space code into kernel-
The code for system calls is executed while the processor is in supervisor
mode. To accomplish this, Linux on Intel platforms generates an interrupt 0x80 to oc-
cur, with a parameter set to the system call number to execute. This system call num-
ber is an offset into the sys_call_table, the table of all system call entries (stored in
/usr/src/linux/arch/i386/kernel/entry.S). In RedHat 6.2, the table is defined as fol-

space code.

lows:

.data

ENTRY (sys_

.long
.long
.long
.long
.long
.long
.long
.long
.long

.long
.long

/*

*

call_table)
SYMBOL_NAME(sys_ni_syscall) /x 0O
SYMBOL_NAME (sys_exit)

SYMBOL_NAME (sys_fork)

SYMBOL_NAME (sys_read)

SYMBOL_NAME (sys_write)

SYMBOL_NAME (sys_open) /* 5 *x/

SYMBOL_NAME(sys_sigaltstack)
SYMBOL_NAME (sys_sendfile)
SYMBOL_NAME (sys_ni_syscall)
SYMBOL_NAME (sys_ni_syscall)
SYMBOL_NAME (sys_vfork)

- o0ld "setup()" system callx/

/* streamsl */
/* streams2 */
/* 190 */

NOTE!! This doesn’t have to be exact - we just have

* to make sure we have _enough_ of the "sys_ni_syscall"
* entries. Don’t panic if you notice that this hasn’t
* been shrunk every time we add a new system call.

*/
.rept

.endr

NR_syscalls-190
.long SYMBOL_NAME(sys_ni_syscall

)

Entry 1 contains the address of the exit () system call, 2 is for fork(), and so on. Any
entry labeled sys_ni_syscall is a system call that is not implemented.

3.1 System Call Table

To implement your system call,

you will need to modify several files. Firs

your system call must be added to the system call table just shown.
your system call is to be named sys_my_call(), then you change the table in
/usr/src/linux/arch/i386/kernel/entry.S to reflect the new call:

ENTRY (sys_

.long
.long

call_table)
SYMBOL_NAME (sys_ni_syscall) /* 0
SYMBOL_NAME (sys_exit)

- old "setup()" system callx*/

t,
If

Due: 11:59.59 p.m., Friday, Feb. 23 3

.long SYMBOL_NAME(sys_vfork) /* 190 */
.long SYMBOL_NAME(sys_my_call) /* 191 *x/

/%

*

NOTE!! This doesn’t have to be exact - we just have
to make sure we have _enough_ of the "sys_ni_syscall"

* *

entries. Don’t panic if you notice that this hasn’t
* been shrunk every time we add a new system call.
*/
.rept NR_syscalls-190
.long SYMBOL_NAME(sys_ni_syscall)
.endr

This allows a trap (interrupt 0x80) with an argument of 191 to invoke sys_my_call().
Before modifying entry.S be sure to make a backup of the original file! You
may need it to recover from errors.

3.2 System Call Stub

Even though you have added an entry to the system call table, you still need to generate
a stub so that a C function call will invoke the new system call. The stub generates code
initiating a trap with the proper argument. To generate the stub, you should first edit
the /usr/src/linux/include/asm/unistd.h file to add constant definition for your new
system call.

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_getpmsg 188 /* some people actually want streams */
#define __NR_putpmsg 189 /* some people actually want streams */
#define __NR_vfork 190

/* #define __NR_ugetrlimit 191 SuS compliant getrlimit */

#define __NR_mmap2 192

#define __NR_truncate64 193

#define __NR_ftruncate64 194

#define __NR_stat64 195

#define __NR_lstat64 196

#define __NR_fstat64 197

The system call number 191 is commented out, so you can replace it with the constant
definition for your new call.

#define __NR_my_call 191

Again, be sure to make a backup of this file before you edit it! Macros are available for
generating system calls with zero to five parameters. For example, to generate a stub for a
system call with two parameters, the macro has the form

Due: 11:59.59 p.m., Friday, Feb. 23 4

_syscall2(type, name, typel, argl, type2, arg2);

In this macro, type is the return value type, name is the name of the stub, typel is the
type of the first parameter argl and type?2 is the type of the second parameter arg2.

To generate the stub for my_call in your user program, you make the following macro
call.

#include <linux/unistd.h>

/* Generate system call stub for int my_call(int x, int y) */
/* This is placed above your main function, in the file scope */
_syscall2(int, my_call, int, x, int, y);

The function my_call is the function call you would execute to call the system call
sys_my_call.

3.3 Implementing Your System Call

To implement your system call, the easiest thing to do is modify one of the existing
kernel source files to add a function implementing the system call. In this assignment,
/usr/src/linux/kernel/fork.c or /usr/src/linux/kernel/exit.c will be a good file
to use. Whichever file you choose to modify, make a backup of the file first!

The function implementing the system call uses an additional modifier to the return
type, asmlinkage to denote that the function is interacting with assembler generated code.
Suppose that sys_my_call sums its two arguments and returns the result as an integer
value. The complete system call is

asmlinkage int sys_my_call(int x, int y) {
return x + y,;

3

You can browse the kernel source for functions named sys_x* to find the implementations
for several more system calls.

Finally, you may want to print out debugging information along the way. The printf
function and several other C library functions are NOT available for use in kernel code.
Thus another function, printk is used to print out information in kernel code. The printk
function behaves in the same manner as printf (i.e., it has the same parameters and
uses the same formatting codes). You can look at the manual page for printf for more
information.

4 Installing the Kernel Sources

If you do not have the sources in /usr/src/linux then you need to install them. You
should obtain the following RPMs for RedHat 6.2 from a RedHat mirror:

e kernel-headers-2.2.14-5.0.1386.rpm

e kernel-source-2.2.14-5.0.1386.rpm

Due: 11:59.59 p.m., Friday, Feb. 23 5

e kernel-doc-2.2.14-5.0.1i386.rpm

If you are using a laptop, you will also want:
e kernel-pcmcia-cs-2.2.14-5.0.1386.rpm

You might be interested in debugging kernel dump files as well (should you cause a
kernel panic). If you want this capability, you will also want:

e kernel-utils-2.2.14-5.0.1i386.rpm

Each of these files can be installed on your system by using the command
rpm -ivh filename

as the root user.

5 Building and Running Your Kernel

The final step is to build and run your new kernel. The process I outline here assumes
that you have Linux installed in its own partition and that you are using LILO (the Linux
Loader) to boot your system. For those running partitionless systems or boot disks, I
would like volunteers to help test building and installing instructions appropriate for those
platforms.

Compilation of the kernel should be the same as below, but installing kernel
and running LILO is not appropriate for boot disk or partitionless systems. Be
careful!

I used this process myself on a laptop, and it generally worked, with the exception of
one kernel module, emu10k1.o. This is a soundcard module and is not necessary. However,
if anyone wants to help me identify the problem, please contact me.

With the following instructions, I have RedHat 6.2 set up to boot either the original
kernel installed or the modified one I built. I encourage you to use this kind of setup so
that you can recover in the case your kernel has problems. Some more information can be
obtained in the README file in /usr/src/linux. I will only focus on what I did. If you're a
Linux guru, I'd appreciate any corrections to the process below, but you can do your own
thing when building your kernel. All commands are assumed run in /usr/src/linux as
the root user unless otherwise specified.

5.1 Starting with a Clean Environment

It’s a good idea to clean out any old object files from the kernel source directory by using
the command

make clean

After cleaning the environment, you should modify the Makefile and edit the
EXTRAVERSION variable so that you do not overwrite the original RedHat Kernel. I changed
EXTRAVERSION to be

EXTRAVERSION = -os

to denote that this is my OS class kernel.

Due: 11:59.59 p.m., Friday, Feb. 23 6

5.2 Configuring Your Kernel

The first step is to configure your kernel. There are several options for configuration, which
will allow you to build a lean kernel: make config, make menuconfig, and make xconfig.
I went the easy route and copied the kernel configuration used by RedHat, which is stored
in /usr/src/linux/configs/kernel-2.2.14-1386.config. To use this, copy the file to
/usr/src/linux/.config and then configure the kernel with

make oldconfig

This command uses the configuration file in /usr/src/linux/.config to configure the
kernel. T also tried to use /usr/src/linux/configs/kernel-2.2.14-i686.config but
this caused several module errors. Again, if someone can help me figure this out, I would
appreciate it.

5.3 Making Source Dependencies

After configuring the kernel, you should make the source dependencies with either

make depend

or

make dep

Both commands do the same thing.

5.4 Compile the Kernel
The next step is to compile the kernel. This is accomplished with the command

make

5.5 Building Kernel Modules

The default RedHat kernel configuration configures several drivers as kernel modules:
shared object files loadable by the kernel as needed. To build all of these modules, ex-
ecute the command

make modules

You only need to do this the first time you build and install your kernel.

5.6 Installing the New Kernel

Once the kernel and kernel modules are built, you should install the kernel and modules
in such a way that doesn’t overwrite the original Linux kernel. Fortunately, RedHat 6.2
provides nicely set up Makefiles for installation. If you followed the directions above, the
commands

make install
make modules_install

will install a new kernel and modules without overwriting the old ones.

Due: 11:59.59 p.m., Friday, Feb. 23 7

5.7 LILO

Before booting your new system, you need to edit your LILO configuration file, which is
stored in /etc/lilo.conf. You need to add an entry for your newly created kernel. 1
assume that you have followed my directions above, in which case the kernel you should
boot for the OS project is /boot/vmlinuz-2.2.14-o0s.

My /etc/lilo.conf is

boot=/dev/hda3
map=/boot/map
install=/boot/boot.b
prompt

linear

default=linux
message=/boot/message

image=/boot/vmlinuz-2.2.14-5.0
label=1inux
read-only
root=/dev/hda3

image=/boot/vmlinuz-2.2.14-0s
label=os
read-only
root=/dev/hda3

other=/dev/hdal
label=windows

which is set up to boot the original RedHat kernel, the kernel I modified (the second
image entry), and Windows 98. This also is set up to display a message contained in the
file /boot/message which is

Command Operating System
linux RedHat Linux 6.2
windows Windows 98

os 0S kernel

Type one of the commands above to boot the specified operating system.

Your own LILO configuration file may look very different. My suggestion is to copy
the entry for the original Linux kernel and change it to load your modified kernel (don’t
forget to change the label!). You should only need to edit your file once, unless you make
a mistake.

Each time you compile and install a modified kernel, you must run LILO to set up
booting:

/sbin/lilo

Due: 11:59.59 p.m., Friday, Feb. 23 8

5.8 Running the Modified Kernel

To run your modified kernel, simply type in the label you gave it (os in my example) at
the LILO boot: prompt. To run the original kernel, simply type the label you gave the
original kernel (1inux in my example). By setting things up this way, you can recover by
switching to the original kernel.

5.9 Boot Disks

If you make and install the kernel and modules as described above, the following command
can be used to make a bootdisk for partitionless or other Linux setups that require a
bootdisk:

/sbin/mkbootdisk 2.2.14-o0s

This will create a bootdisk that will boot the kernel /boot/vmlinuz-2.2.14-o0s, which
should exist if you followed the instructions in the specification.

6 Hints

e The variable nr_tasks tracks the number of tasks existing in the system. You might
want to see where this variable is updated.

e In /usr/src/linux, try executing the command grep -r string . to search for
string in EVERY file in /usr/src/linux. You can find the previously mentioned
variable by using this command.

e You will need to declare your own variable for tracking the processes created and

destroyed. You may need an extern declaration to access your variable in several
files.

e SCSI users may need to compile in SCSI support directly into their kernel instead of
using Linux’s module support.

7 Submission

We will use the Curator, http://ei.cs.vt.edu/ eags/Curator.html to collect program
submissions. The URL for submission is http://spasm.cs.vt.edu:8080/curator/. Only
the servlet interface to the Curator is supported. No grading will be done by the Curator.

You are to submit a single tarred (man tar) and gzipped (man gzip) archive containing

e A text file named README describing the changes you made to the kernel, how your
user program handles sampling process statistics in the specified increments, and a
description of each file included in the archive.

e The modified entry.S, linux/unistd.h, and fork.c or exit.c kernel sources
e The source file(s) for procs.

e Sample output from running procs at least 4 different times, two each for process
creation and destruction. You should use different sample rates and lengths of time
for each test run.

Due: 11:59.59 p.m., Friday, Feb. 23 9

Your files must be contained in a directory named project2 of the archive. Be sure to
include only the files listed above. Do not include extra files from an integrated development
environment such as configure scripts, automake related files, etc. This is primarily an
issue if you are using KDevelop.

Be sure to include your name in all files submitted. DO NOT include executables or
object files of any type in the archive. Submissions that do not gunzip and/or untar
will not be graded. Be careful to FTP in binary mode if you are transferring
your file to a Windows machine before submitting to the Curator. Invalid
submission format will receive a grade of zero (0)!

8 Programming Environment

As stated in the syllabus, you must use Linux and gcc/g++ to implement this project. You
must use C to implement your system call, but C++ is acceptable for implementing procs.
All data structures used in your program must be student implemented. Using
the standard template library (STL) or other third party libraries for data
structure implementations is strictly prohibited. Using C++ input and output
streams and C++ strings is OK.

9 Acknowledgements

Portions of this exercise are synthesized from Kernel Projects For Linux by Gary Nutt.

