
Chapter 9

High-level Synchronization

CS 3204

Introduction to Concurrency

n Concurrency

n Execute two or more pieces of code "at the same time“

n Why ?

n No choice:
n Geographically distributed data
n Interoperability of different machines
n A piece of code must "serve" many other client processes
n To achieve reliability

n By choice:
n To achieve speedup
n Sometimes makes programming easier (e.g., UNIX pipes)

CS 3204

Possibilities for Concurrency

Architecture: Program Style:

Uniprocessor with: Multiprogramming,

- I/O channel multiple process system

- I/O processor programs

- DMA

Multiprocessor Parallel programming

Network of processors Distributed Programs

CS 3204

Examples of Concurrency
in Uniprocessors

Example 1: Unix pipes

Motivations:
- fast to write code
- fast to execute

Example 2: Buffering

Motivation:

- required when two asynchronous processes must
communicate

Example 3: Client/Server model

Motivation:

- geographically distributed computing

CS 3204

Operating System issues to
Support Concurrency

n Synchronization
n What primitives should OS provide ?

n Communication
n What primitives should the OS provide to the interface

communication protocol ?

n Hardware Support
n Needed to implement OS primitives

CS 3204

Operating System issues to
Support Concurrency…
n Remote execution

n What primitives should OS provide ?
n Remote Procedure Call (RPC)
n Remote Command Shell

n Sharing address space
n Makes programming easier

n Light-weight threads
n Can a process creation be as cheap as a procedure call ?

CS 3204

Definitions

n Concurrent process execution can be:

n interleaved, or

n physically simultaneous

n Interleaved

n Multi-programming on uniprocessor

n Physically simultaneous

n Uni- or multi-programming on multiprocessor

CS 3204

Definitions…

n Process, thread, or task

n Scheduleable unit of computation

n Granularity

n Process "size" or computation to

n Communication ratio

n Too small: excessive overhead

n Too large: less concurrency

CS 3204

Precedence Graph
Consider writing a program as a set of tasks.

Precedence graph:

specifies execution ordering among tasks

S1: A := X + Y

S2: B := Z + 1

S3: C := A - B

S4: W := C + 1

S1: A := X + Y

S2: B := Z + 1

S3: C := A - B

S4: W := C + 1

S1 S2

S3

S4

Parallelizing compilers for computers with vector processors build
dependency graphs.

CS 3204

Cyclic Precedence Graph

Precedence Graphs must
be ACYCLIC

Precedence Graphs must
be ACYCLIC

S1

S1

S1

What does the following graph represent ?

S2 must be performed before S3 begins

AND

S3 must be performed before S2 begins

CS 3204

Concurrency Conditions

Read set of Si:

R (Si) = { a1, a2, ..., an }

Set of all variables referenced in Si

Write set of Si:

W (Si) = { b1, b2, ..., bm },

Set of all variables changed by Si

Let Si denote a statement.

CS 3204

Concurrency Conditions…
C := A - B

R (C := A - B) = { A, B }

W (C := A - B) = { C }

scanf ("%d", &A)

R (scanf ("%d", &A)) = { }

W (scanf ("%d", &A)) = { A }

CS 3204

Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to
execute concurrently with valid results:

1) R (S1) INTERSECT W (S2) = { }

2) W (S1) INTERSECT R (S2) = { }

3) W (S1) INTERSECT W (S2) = { }

These are called the Bernstein Conditions.

CS 3204

Parallel Language Constructs (Review)
FORK and JOINFORK and JOIN

FORK L Starts parallel execution at the statement labelled L
and at the statement following the FORK

Recombines 'Count' concurrent computationsJOIN Count

Count := Count - 1;

If

(Count > 0)

Then

 Terminate computation

else continueJoin is an atomic operation.

CS 3204

Structured Parallel Constructs

Sequential execution splits off into several concurrent
sequences

Parallel computations merge

PARBEGIN

PAREND

PARBEGIN

Statement 1;

Statement 2;

Statement N;

PAREND;

PARBEGIN

Statement 1;

Statement 2;

Statement N;

PAREND;

PARBEGIN

Q := C mod 25;

Begin

N := N - 1;

T := N / 5;

End;

Proc1 (X, Y);

PAREND;

PARBEGIN

Q := C mod 25;

Begin

N := N - 1;

T := N / 5;

End;

Proc1 (X, Y);

PAREND;

PARBEGIN / PARENDPARBEGIN / PAREND

CS 3204

Parbegin / Parend
Examples

Begin

PARBEGIN

A := X + Y;

B := Z + 1;

PAREND;

C := A - B;

W := C + 1;

End;

Begin

PARBEGIN

A := X + Y;

B := Z + 1;

PAREND;

C := A - B;

W := C + 1;

End;

Begin
S1;
PARBEGIN

S3;
BEGIN

S2;
S4;
PARBEGIN

S5;
S6;

PAREND;
End;

PAREND;
S7;

End;

Begin
S1;
PARBEGIN

S3;
BEGIN

S2;
S4;
PARBEGIN

S5;
S6;

PAREND;
End;

PAREND;
S7;

End;

CS 3204

Synchronization with Monitors

CS 3204

Monitors

n P & V are primitive operations

n Semaphore solutions are difficult to accurately express for
complex synchronization problems

n Need a High-Level solution: Monitors

n A Monitor is a collection of procedures and shared data

n Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

n Data may be global to all procedures in the monitor or local to a
particular procedure

n No access of data is allowed from outside the monitor

CS 3204

Condition Variables
n Within the monitor, Condition Variables are declared

n A queue is associated with each condition variable

n Only two operations are allowed on a condition variable:

The procedure performing the wait is put on the
queue associated with x

If queue is non-empty: resume some process at
the point it was made to wait

X.wait

X.signal

• Note: V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

• OS scheduler decides which of several waiting monitor calls to
unlock upon signal

CS 3204

Monitor…

ADT’s condition
variables

queuesProc1

Proc2

Proc3

queue

§ Queue to enter monitor via calls to procedures

§ Queues within the monitors via condition variables

§ ADTs and condition variables only accessible via monitor
procedure calls

CS 3204

Monitors…

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself.
Program

Begin

Request;

< CS >

Release;

End;

Program

Begin

Request;

< CS >

Release;

End;

Monitor <name>
condition i;

Request

Release

end monitor

CS 3204

N-Process Critical Section:
Monitor Solution

Monitor NCS {
OK: condition
Busy: boolean <-- FALSE

 Request() {
 if (Busy) OK.wait;
 Busy = TRUE;

 }
 Release() {

 Busy = FALSE;
 OK.signal;

}
}

Procedure P {
NCS.Request();
<CS>;

 NCS.Release();
}

main() {
parbegin P;P;P;P; parend }

CS 3204

Shared Variable Monitor
monitor sharedBalance {

int balance;

public:

 Procedure credit(int amount)

{ balance = balance + amount;}

 Procedure debit(int amount)

{ balance = balance - amount;}

}

CS 3204

Reader & Writer Schema
reader() {

 while(true){

...

startRead();

<read the resource>

finishRead();

...

 }

}

writer() {

 while(true){

...

startWrite();

<write resource>

finishWrite();

...

 }

}

fork(reader, 0);

fork(reader, 0);

fork(writer, 0);

CS 3204

Reader & Writers Problem:
An attempted solution
monitor readerWriter_1{
 int numberOfReaders = 0;
 int numberOfWriters = 0;
 boolean busy = false;
public:
 startRead(){

while(numberOfReaders != 0);
numberOfReaders = numberOfReaders+1;

 }
 finishRead() {

numberOfReaders = numberOfReaders-1;
 }
 startWrite(){

numberOfWriters = numberOfWriters+1;
while(busy || numberOfReaders > 0);

 busy = true;
 }
 finishWrite() {

numberOfWriters = numberOfWriters-1;
 busy = false;
 }
}

This solution
does not work
This solution
does not work

CS 3204

Reader & Writers Problem:
The solution

monitor reader_writer_2{
 int numberOfReaders = 0;
 boolean busy = false;
 condition okToRead, okToWrite;
public:
 startRead(){
 if(busy || okToWrite.queue) okToRead.wait;

numberOfReaders = numberOfReaders+1;
 okToRead.signal;
 }
 finishRead() {

numberOfReaders = numberOfReaders-1;
if(numberOfReaders =0) okToWrite.signal;

 }
 startWrite(){

if(busy || numberOfReaders != 0) okToWrite.wait;
 busy = true;
 }
 finishWrite() {

busy = false;
if(okToWrite.queue) okToWrite.signal;
else okToRead.signal;

 }
}

CS 3204

Dining Philosophers’ Problem:
The solution
enum status {eating, hungry, thinking};
monitor diningPhilosophers{
 status state[N]; condition self[N]; int j;
// This procedure can only be called from within the monitor
 test(int i) {

if((state[i=1 MOD N] != eating) && (state[i] == hungry)
&& (state[i+1 MOD N] != eating)) {

 state[i] = eating;
 self[i].signal;
}

public:
 pickUpForks(){

state[i] = hungry;
test(i);
if(state[i] != eating) self[i].wait;

 }
 putDownForks(){

state[i] = thinking;
test(i-1 MOD N); test(i+1 MOD N);

 }
 diningPhilosophers() { // Monitor initialization code

for(int i=0; i<N; i++) state[i] = thinking;
 }
}

CS 3204

Simple Resource Allocation
with a monitor
monitor resourceAllocator;

var resourceInUse: boolean;

 resourceIsFree: condition;

procedure getResource;

begin

if(resourceInUse) wait(resourceIsFree);

resourceInUse := true;

end;

procedure returnResource;

begin

resourceInUse := false;

signal(resourceIsFree);

end;

begin

resourceInUse := false;

end.

Can use as
a Semaphore
Can use as
a Semaphore

CS 3204

Monitor implementation
of a ring buffer
monitor ringBufferMonitor;

var ringBuffer: array[0..slots-1] of stuff;

 slotInUse: 0..slots;

 nextSlotToFill: 0..slots-1;

 nextSlotToEmpty: 0..slots-1;

 ringBufferHasData, ringBufferHasSpace: condition;

procedure fillASlot(slotData: stuff);

begin

if(slotInUse = slots) then wait(ringBufferHasSpace);

ringBuffer[nextSlotToFill] := slotData;

slotInUse := slotInUse + 1;

nextSlotToFill := (nextSlotToFill+1) MOD slots;

signal(ringBufferHasData);

end;

CS 3204

Monitor implementation
of a ring buffer…
procedure emptyASlot(var slotData: stuff);

begin

if(slotInUse = 0) then wait(ringBufferHasData);

slotData := ringBuffer[nextSlotToEmpty];

slotInUse := slotInUse - 1;

nextSlotToEmpty := (nextSlotToEmpty-1) MOD slots;

signal(ringBufferSpace);

end;

begin

slotInUSe := 0;

nextSlotToFill := 0;

nextSlotToEmpty := 0;

end.

