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High-level Synchronization
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Introduction to Concurrency

n Concurrency

n Execute two or more pieces of code "at the same time“

n Why ?

n No choice:
n Geographically distributed data
n Interoperability of different machines
n A piece of code must "serve" many other client processes
n To achieve reliability

n By choice:
n To achieve speedup
n Sometimes makes programming easier (e.g., UNIX pipes)
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Possibilities for Concurrency

Architecture:  Program Style:

Uniprocessor with:  Multiprogramming,

- I/O channel multiple process system

- I/O processor programs

- DMA

Multiprocessor  Parallel programming

Network of processors Distributed Programs
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Examples of Concurrency
in Uniprocessors

Example 1:  Unix pipes

Motivations:
- fast to write code
- fast to execute

Example 2:  Buffering

Motivation:

- required when two asynchronous processes must
communicate

Example 3:  Client/Server model

Motivation:

- geographically distributed computing
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Operating System issues to
Support Concurrency

n Synchronization
n What primitives should OS provide ?

n Communication
n What primitives should the OS provide to the interface

communication protocol ?

n Hardware Support
n Needed to implement OS primitives
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Operating System issues to
Support Concurrency…
n Remote execution

n What primitives should OS provide ?
n Remote Procedure Call (RPC)
n Remote Command Shell

n Sharing address space
n Makes programming easier

n Light-weight threads
n Can a process creation be as cheap as a procedure call ?
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Definitions

n Concurrent process execution can be:

n interleaved, or

n physically simultaneous

n Interleaved

n Multi-programming on uniprocessor

n Physically simultaneous

n Uni- or multi-programming on multiprocessor
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Definitions…

n Process, thread, or task

n Scheduleable unit of computation

n Granularity

n Process "size" or computation to

n Communication ratio

n Too small:  excessive overhead

n Too large:  less concurrency
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Precedence Graph
Consider writing a program as a set of tasks.

Precedence graph:

specifies execution ordering among tasks

S1: A  :=  X  +  Y

S2: B  :=  Z  +  1

S3: C  :=  A  -  B

S4: W  :=  C  +  1

S1: A  :=  X  +  Y

S2: B  :=  Z  +  1

S3: C  :=  A  -  B

S4: W  :=  C  +  1

S1 S2

S3

S4

Parallelizing compilers for computers with vector processors build
dependency graphs.
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Cyclic Precedence Graph

Precedence Graphs must
be ACYCLIC

Precedence Graphs must
be ACYCLIC

S1

S1

S1

What does the following graph represent ?

S2 must be performed before S3 begins

AND

S3 must be performed before S2 begins
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Concurrency Conditions

Read set of Si:

R (Si)  =  { a1, a2, ..., an }

Set of all variables referenced in Si

Write set of Si:

W (Si)  =  { b1, b2, ..., bm },

Set of all variables changed by Si

Let Si denote a statement.
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Concurrency Conditions…
C  :=  A  -  B

R ( C  :=  A  -  B )  =  { A, B }

W ( C  :=  A  -  B  )  =  { C }

scanf ("%d", &A)

R (scanf ("%d", &A))  =  { }

W (scanf ("%d", &A))  =  { A }
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Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to
execute concurrently with valid results:

1) R ( S1 )  INTERSECT  W ( S2 )  =  { }

2) W ( S1 )  INTERSECT  R ( S2 )  =  { }

3) W ( S1 )  INTERSECT  W ( S2 )  =  { }

These are called the Bernstein Conditions.
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Parallel Language Constructs (Review)
FORK and JOINFORK and JOIN

FORK  L Starts parallel execution at the statement labelled L
and at the statement following the FORK

Recombines 'Count' concurrent computationsJOIN Count

Count  :=  Count  -  1;

If

( Count > 0 )

Then

   Terminate computation

else  continueJoin is an atomic operation.
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Structured Parallel Constructs

Sequential execution splits off into several concurrent
sequences

Parallel computations merge

PARBEGIN

PAREND

PARBEGIN

Statement 1;

Statement 2;

Statement N;

PAREND;

PARBEGIN

Statement 1;

Statement 2;

Statement N;

PAREND;

PARBEGIN

Q  :=  C  mod  25;

Begin

N  :=  N  -  1;

T  :=  N  /  5;

End;

Proc1 ( X, Y );

PAREND;

PARBEGIN

Q  :=  C  mod  25;

Begin

N  :=  N  -  1;

T  :=  N  /  5;

End;

Proc1 ( X, Y );

PAREND;

PARBEGIN / PARENDPARBEGIN / PAREND
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Parbegin / Parend 
Examples

Begin

PARBEGIN

A  :=  X  +  Y;

B  :=  Z  +  1;

PAREND;

C  :=  A  -  B;

W  :=  C  +  1;

End;

Begin

PARBEGIN

A  :=  X  +  Y;

B  :=  Z  +  1;

PAREND;

C  :=  A  -  B;

W  :=  C  +  1;

End;

Begin
S1;
PARBEGIN

S3;
BEGIN

S2;
S4;
PARBEGIN

S5;
S6;

PAREND;
End;

PAREND;
S7;

End;

Begin
S1;
PARBEGIN

S3;
BEGIN

S2;
S4;
PARBEGIN

S5;
S6;

PAREND;
End;

PAREND;
S7;

End;



CS 3204

Synchronization with Monitors
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Monitors

n P & V are primitive operations

n Semaphore solutions are difficult to accurately express for
complex synchronization problems

n Need a High-Level solution:   Monitors

n A Monitor is a collection of procedures and shared data

n Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

n Data may be global to all procedures in the monitor or local to a
particular procedure

n No access of data is allowed from outside the monitor
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Condition Variables
n Within the monitor, Condition Variables are declared

n A queue is associated with each condition variable

n Only two operations are allowed on a condition variable:

The procedure performing the wait is put on the
queue associated with x

If queue is non-empty: resume some process at
the point it was made to wait

X.wait

X.signal

• Note:  V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

• OS scheduler decides which of several waiting monitor calls to
unlock upon signal
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Monitor…

ADT’s condition 
variables

queuesProc1

Proc2

Proc3

queue

§  Queue to enter monitor via calls to procedures

§  Queues within the monitors via condition variables

§  ADTs and condition variables only accessible via monitor
procedure calls
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Monitors…

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself.
Program

Begin

Request;

< CS >

Release;

End;

Program

Begin

Request;

< CS >

Release;

End;

Monitor <name>
condition i;

Request

Release

end monitor
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N-Process Critical Section:
Monitor Solution

Monitor NCS {
OK: condition
Busy: boolean <-- FALSE

    Request() {
    if (Busy) OK.wait;
    Busy = TRUE;

  }
   Release() {

     Busy = FALSE;
     OK.signal;

}
}

Procedure P {
NCS.Request();
<CS>;

 NCS.Release();
}

main() {
parbegin P;P;P;P; parend }
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Shared Variable Monitor
monitor sharedBalance {

int balance;

public:

 Procedure credit(int amount)

{ balance = balance + amount;}

 Procedure debit(int amount)

{ balance = balance - amount;}

}
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Reader & Writer Schema
reader() {

   while(true){

...

startRead();

<read the resource>

finishRead();

...

    }

}

writer() {

   while(true){

...

startWrite();

<write resource>

finishWrite();

...

    }

}

fork(reader, 0);

fork(reader, 0);

fork(writer, 0);
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Reader & Writers Problem:
An attempted solution
monitor readerWriter_1{
   int numberOfReaders = 0;
   int numberOfWriters = 0;
   boolean busy = false;
public:
   startRead(){

while(numberOfReaders != 0);
numberOfReaders = numberOfReaders+1;

       }
   finishRead() {

numberOfReaders = numberOfReaders-1;
       }
   startWrite(){

numberOfWriters = numberOfWriters+1;
while(busy || numberOfReaders > 0);

       busy = true;
       }
   finishWrite() {

numberOfWriters = numberOfWriters-1;
       busy = false;
       }
}

This solution 
does not work
This solution 
does not work
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Reader & Writers Problem:
The solution

monitor reader_writer_2{
   int numberOfReaders = 0;
   boolean busy = false;
   condition okToRead, okToWrite;
public:
   startRead(){
       if(busy || okToWrite.queue) okToRead.wait;

numberOfReaders = numberOfReaders+1;
        okToRead.signal;
       }
   finishRead() {

numberOfReaders = numberOfReaders-1;
if(numberOfReaders =0) okToWrite.signal;

       }
   startWrite(){

if(busy || numberOfReaders != 0) okToWrite.wait;
        busy = true;
       }
   finishWrite() {

busy = false;
if(okToWrite.queue) okToWrite.signal;
else okToRead.signal;

       }
}
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Dining Philosophers’ Problem:
The solution
enum status {eating, hungry, thinking};
monitor diningPhilosophers{
   status state[N];  condition self[N];  int j;
// This procedure can only be called from within the monitor
   test(int i) {

if((state[i=1 MOD N] != eating) && (state[i] == hungry)
&& (state[i+1 MOD N] != eating) ) {

   state[i] = eating;
   self[i].signal;
}

public:
  pickUpForks(){

state[i] = hungry;
test(i);
if(state[i] != eating) self[i].wait;

   }
   putDownForks(){

state[i] = thinking;
test(i-1 MOD N); test(i+1 MOD N);

   }
   diningPhilosophers() { // Monitor initialization code

for(int i=0; i<N; i++) state[i] = thinking;
   }
}
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Simple Resource Allocation
with a monitor
monitor resourceAllocator;

var resourceInUse: boolean;

    resourceIsFree: condition;

procedure getResource;

begin

if(resourceInUse) wait(resourceIsFree);

resourceInUse := true;

end;

procedure returnResource;

begin

resourceInUse := false;

signal(resourceIsFree);

end;

begin

resourceInUse := false;

end.

Can use as  
a Semaphore
Can use as  
a Semaphore
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Monitor implementation
of a ring buffer
monitor ringBufferMonitor;

var ringBuffer: array[0..slots-1] of stuff;

    slotInUse: 0..slots;

    nextSlotToFill: 0..slots-1;

    nextSlotToEmpty: 0..slots-1;

    ringBufferHasData, ringBufferHasSpace: condition;

procedure fillASlot(slotData: stuff);

begin

if(slotInUse = slots) then wait(ringBufferHasSpace);

ringBuffer[nextSlotToFill] := slotData;

slotInUse := slotInUse + 1;

nextSlotToFill := (nextSlotToFill+1) MOD slots;

signal(ringBufferHasData);

end;
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Monitor implementation
of a ring buffer…
procedure emptyASlot(var slotData: stuff);

begin

if(slotInUse = 0) then wait(ringBufferHasData);

slotData := ringBuffer[nextSlotToEmpty];

slotInUse := slotInUse - 1;

nextSlotToEmpty := (nextSlotToEmpty-1) MOD slots;

signal(ringBufferSpace);

end;

begin

slotInUSe := 0;

nextSlotToFill := 0;

nextSlotToEmpty := 0;

end.


