CS 3204 Project 4 Spring 2002

Overlay Memory Management Due: 29 April

1 Introduction

We have discussed several memory management techniques that have been used by oper-
ating systems. Early and simple operating systems treated memory as a single contiguous
block, and applications were compiled to access absolute (physical) memory addresses. A
disadvantage to this approach was that processes were limited by the size of memory avail-
able.

An attempt to overcome this limitation was overlays, the ability to overlay memory
locations with independent software modules. A process is broken up into several software
modules, and dependencies between the modules are modelled with a tree. For example,
suppose a process has 5 modules A, B,C, D, E such that B and E require A to be in
memory, C' and D require B to be in memory, but no other restrictions on the modules
exist. These relationships can be modelled with the tree in Figure 1. The dependencies as

A
/\
B E
N

C D
Figure 1: A tree modelling the relationships between program modules.
indicated in such a tree define which modules can be assigned the same memory addresses.

If the modules above used 40, 30, 10, 10, and 40 memory units respectively, then Figure 2
contains the corresponding memory layout for the process using overlays.

0

40

70
80

C D

Figure 2: The memory layout for the sample process.



2 Specification

In this assignment, you will implement a simplified linker named overlay that takes an
overlay specification and determines the memory layout of the program. Your program
should determine the (minimum) amount of memory required by the process for execution,
and the absolute addresses used by each module.

A sequence of accesses to relative addresses in program modules will also be given. For
each access your program should determine

e which modules are unloaded as a result of the access,
e which modules are loaded as a result of the access, and
e the absolute address corresponding to the relative address being accessed.

Your program is to read from standard input and write to standard output output (e.g.,
cin and cout respectively). You should use command line input and output redirection to
read from a file and to print to a file.

3 Input

The input file consists of two parts: the module specification and the access sequence. A
sample input file is contained in Figure 3.

The first line in the module specification is the number of modules n for the program.
The next n lines are in the following format:

module mem numchild childl child2 ...

where module is the name of the module, mem is the amount of memory used by the module,
numchild is the number of modules that require this module to be loaded, and childi,
child2, ... are the names of the modules that require this module to be loaded. Module
names are strings without spaces. The memory usage and number of children are integers.

40 2 B E
302 CD
10 0

10
40

o O

16
32

=M Q0O MmOQmeE o

Figure 3: A sample input file.



Following the module specification, the remainder of the file contains memory accesses
in the form

module address

where module is the module containing the relative address and address is a relative address
within that module. Your program should then generate commands to unload any modules
that are not required to be in memory and load any modules that are required to be in
memory. The modules loaded as the result of a memory access are used as the starting
point for the next memory access.

The following will be true of the input.

e The input file will be in the proper format and contain only valid information;
e The first module in the module specification is the root of the tree;

e The description of the parent module will appear before the description of any of its
children;

e All memory accesses in the file will be valid.

4 QOutput

An output file corresponding to the sample input file is shown in Figure 4. The first part
of the output is a table listing each module and its memory allocation. The table should
be sorted first by ascending starting address of each module, then by ascending ending
address, and then by ascending module name to break ties. Following the table is the total
amount of memory required by the process.

After the module summary table, a list of load, unload, and access commands are
displayed for each access specification in the input file. Modules should be unloaded (if
necessary) before loading new modules (if necessary). The access line contains the physical
address of the memory location.

5 Submission

We will use the Curator at http://spasm.cs.vt.edu:8080/curator01/ to collect program
submissions. No grading will be done by the Curator.
You are to submit a single tarred (man tar) and gzipped (man gzip) archive containing

e A text file named README describing the program, describing the contents of the
archive, providing building instructions (including the platform you used for devel-
opment), a user’s guide (including how to start the program), and examples of usage
with your test files;

e The source code for your programs;
e Sample output for 3 executions of your programs;

e A script named build or a suitable Makefile for building your programs.



A 0 39
B 40 69
E 40 79
C 70 79
D 70 79

access 75
unload D
load C

access 77
unload C
unload B
load E

access 56
unload E
access 32

Figure 4: A sample output file.

Your files must be a directory named p4-pid (where pid is your university pid) of the
archive. Be sure to include only the files listed above. Do not include extra files from an
integrated development environment such as configure scripts, automake related files, etc.
This is primarily an issue if you are using KDevelop.

Be sure to include your name in all files submitted. DO NOT include executables or
object files of any type in the archive. Submissions that do not gunzip and/or untar
will not be graded. Be careful to FTP in binary mode if you are transferring
your file to a Windows machine before submitting to the Curator.

Failure to follow the submission rules will result in a grade of zero (0) for
this assignment. There will be no exceptions.

6 Programming Environment

As stated in the syllabus, you must use Linux and gcc/g++ to implement this project. Your
program must compile and run properly in the lab.

Your solution may be either object-oriented or procedural, but your design must use
reasonable decomposition of the computational task.

You may use standard library (e.g., STL) classes, but third party libraries are not to be
used. You may want to implement a general tree data structure — in which case, you may

4



use code from a data structures textbook, provided you properly cite the source in your
comments.



