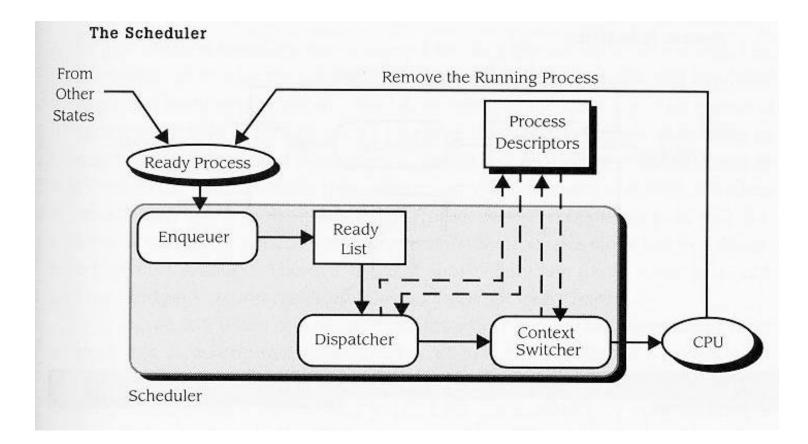
Chapter 7

Process Scheduling

Process Scheduler

- Why do we even <u>need</u> to a process scheduler ?
 - In simplest form, CPU must be shared by
 - > OS
 - > Application
 - In reality, [multiprogramming]
 - > OS : many separate pieces (processes)
 - > Many Applications
- Scheduling [Policy] addresses...
 - When to remove a process from CPU ?
 - Which ready process to allocate the CPU to ?


Context Switch

- Processes are switched out using <u>Context Switching</u>
- Context Switch:
 - Save pertinent info for current process
 - > PC, Register, Status, etc.
 - Update PC, Register, Status, etc.
 - > with info for process selected to run
- Switching User Process
 - 2 Context switches (CTX)

Process 1 running CTX Dispatcher : selects next process CTX

Process 2 running

Scheduler

Selection Strategies

- Motivation
 - To "optimize" some aspect of system behavior
- Considerations
 - Priority of process
 - > External : assigned
 - > Internal : aging
 - Fairness : no starvation
 - Overall Resource Utilization

•••

Selection Strategies...

- Considerations...
 - Turnaround time
 - > Average time / job
 - Throughput
 - > Jobs / time unit
 - Response time
 - System availability
 - Deadlines

Definition & Terms

- Time Quantum
 - Amount of time between timer interrupts
 - Also called Time Slice
- Service Time ? (P_i)
 - Amount of time process needs to be in Running state (acquired CPU) before it is completed
- Wait Time W (P_i)
 - Time a process spends waiting in the Ready state before its first transition to the Running state

Definition & Terms...

- Turnaround Time T (P_i)
 - Amount of time between moment process first enters Ready state and the moment the process exits Running state for the last time (completed)
- Service time, Wait time & Turnaround time are measurable metrics used to compare scheduling algorithms

Classes of Scheduling Algorithms

- 2 major classes
 - Non-preemptive
 - > Run to completion
 - Preemptive
 - > Process with highest priority always gets CPU

Recall : Several ways to establish priority

Non-preemptive Strategies - FCFS

- FCFS First-Come, First-Serve
 - Processes are assigned the CPU in the order they arrive
 - FIFO structure (queue)
 - Ignores service time and any other criteria that may influence performance w.r.t.
 - > Turnaround time
 - > Waiting time

i	τ (p _i)
0	350
1	125
2	475
3	250
4	75

FCFS...

F	CFS	Sc	hed	ule

0		350 475		950	12	200 1273
	p_0	p_1	p_2		p_3	D_A

We can determine each process's turnaround time by observing the FCFS schedule in the Gantt chart shown in Figure 7.7:

$$T_{TRnd}(p_0) = \tau \ (p_0) = 350$$

$$T_{TRnd}(p_1) = (\tau \ (p_1) + T_{TRnd}(p_0)) = 125 + 350 = 475$$

$$T_{TRnd}(p_2) = (\tau \ (p_2) + T_{TRnd}(p_1)) = 475 + 475 = 950$$

$$T_{TRnd}(p_3) = (\tau \ (p_3) + T_{TRnd}(p_2)) = 250 + 950 = 1200$$

$$T_{TRnd}(p_4) = (\tau \ (p_4) + T_{TRnd}(p_3)) = 75 + 1200 = 1275$$

Therefore the average turnaround time is

$$T_{Trnd} = (350 + 475 + 950 + 1200 + 1275) / 5 = 4250 / 5 = 850.$$

From the Gantt chart, we determine the waiting times to be

$$W(p_0) = 0$$

$$W(p_1) = T_{TRnd}(p_0) = 350$$
$$W(p_2) = T_{TRnd}(p_1) = 475$$
$$W(p_3) = T_{TRnd}(p_2) = 950$$

$$W(p_4) = T_{TRnd}(p_3) = 1200$$

So the average wait time is

 $\overline{W} = (0 + 350 + 475 + 950 + 1200) / 5 = 2975 / 5 = 595.$

Non-preemptive Strategies - SJN

- SJN Shortest Job Next
 - Assumes service time known a priori
 - Realistically, can make estimated based on
 - > Past experience history
 - > Size of input
 - > User estimate
 - Algorithm chooses a next process that one which has shortest service time
 - => Minimizes average waiting time
 - => Maximizes throughput
 - => Can penalize processes with high service time

τ (p _i)
350
125
475
250
75

From the Gantt chart, we compute as follows:

$$\begin{split} T_{TRnd}(p_0) &= \tau \; (p_0) + \tau \; (p_3) + \tau \; (p_1) + \tau \; (p_4) = 350 + 250 + 125 + 75 = 800 \\ T_{TRnd}(p_1) &= \tau \; (p_1) + \tau \; (p_4) = 125 + 75 = 200 \\ T_{TRnd}(p_2) &= \tau \; (p_1) + \tau \; (p_0) + \tau \; (p_3) + \tau \; (p_1) + \tau \; (p_4) = 475 + 350 + 250 + 125 + 75 = 1275 \\ T_{TRnd}(p_3) &= \tau \; (p_3) + \tau \; (p_1) + \tau \; (p_4) = 250 + 125 + 75 = 450 \\ T_{TRnd}(p_4) &= \tau \; (p_0) = 75 \end{split}$$

Therefore the average turnaround time is

$$T_{TRnd} = (800 + 200 + 1275 + 450 + 75) / 5 = 2800 / 5 = 560.$$

We determine the wait times to be

 $W(p_0) = 450$ $W(p_1) = 75$ $W(p_2) = 800$ $W(p_3) = 200$ $W(p_4) = 0.$

So the average wait time is

 $\overline{W} = (450 + 75 + 800 + 200 + 0) / 5 = 1525 / 5 = 305.$

- Priority Scheduling
 - Schedule based on externally assigned priorities
 - Highest priority job always gets CPU next

Priority Scheduling...

i	τ(p _i)	PRIORITY
0	350	5
1	125	2
2	475	3
3	250	1
4	75	4

0	250 3	75	850 925	1275
P	$p_3 p_1$	<i>p</i> ₂	p_4	p_0

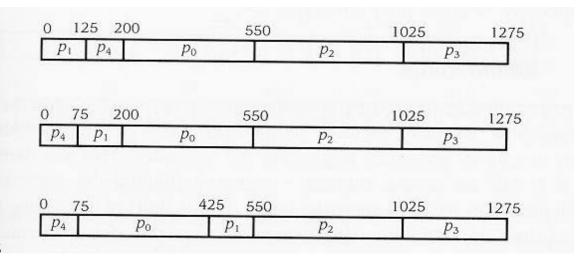
$$\begin{split} T_{TRnd}(p_0) &= \tau \ (p_0) + \tau \ (p_4) + \tau \ (p_2) + \tau \ (p_1) + \tau \ (p_3) = 350 + 75 + 475 + 125 + 250 = 1275 \\ T_{TRnd}(p_1) &= \tau \ (p_1) + \tau \ (p_3) = 125 + 250 = 375 \\ T_{TRnd}(p_2) &= \tau \ (p_2) + \tau \ (p_1) + \tau \ (p_3) = 475 + 125 + 250 = 850 \\ T_{TRnd}(p_3) &= \tau \ (p_3) = 250 \\ T_{TRnd}(p_4) &= \tau \ (p_4) + \tau \ (p_2) + \tau \ (p_1) + \tau \ (p_3) = 75 + 475 + 125 + 250 = 925. \end{split}$$

Therefore the average turnaround time is

$$\underline{T}_{TRnd} = (1275 + 375 + 850 + 250 + 925) / 5 = 3675 / 5 = 735.$$

We determine the waiting times to be

 $W(p_0) = 925$ $W(p_1) = 250$ $W(p_2) = 375$ $W(p_3) = 0$ $W(p_4) = 850.$


So the average wait time is

$$\overline{W} = (925 + 250 + 375 + 0 + 850) / 5 = 2400 / 5 = 480.$$

- Deadline Scheduling
 - Processes are scheduled to meet stated deadlines

1,9,1	DEADLINE
350	575
125	550
475	1050
250	(none)
75	200
	350 125 475 250

Homework: Compute avg. turnaround time and avg. wait time for each of the possibilities

Preemptive Strategies

- Highest priority among all processes in Ready state is allocated CPU
- If a lower priority process is executing when a higher priority process arrives in Ready queue
 - => Lower priority process will be interrupted and replaced with higher priority process
- Depending on scheduling algorithm
 - Provides quick response to higher priority process
 - Provides a fair share of CPU for all processes (esp. when Round Robin is used)

Preemptive Strategies - SJN

- SJN Shortest Job Next
 - [Initial] selection based on shortest service time
 - When new process arrives in Ready queue, need only compare ?(P_{active}) with ?(P_{new})

> If $?(P_{active}) <= ?(P_{new})$, nothing happens

> If $?(P_{active}) > ?(P_{active})$, interrupt, CTX

=> Service time used to determine priorities

Preemptive Strategies- Priority Scheduling

- Priority Scheduling
 - Externally assigned priorities used to determine
 - > Who is (initially) selected to run
 - > If currently running process is interrupted in favor of newly arrived process
- Note: With preemptive scheduling, CTX can have significant impact

Preemptive Strategies - Round Robin

- RR Round Robin
 - Most widely used
 - Each process will receive some time slice or quantum quantum << service time of P_i
 - User interrupts timer
 - Scheduler continuously cycles through Ready queue giving each process 1 quantum of CPU time
 - I/O request can cause process to loose part of its quantum

Round Robin w/o considering CTX

Quantum = 50

i	τ (<i>p_i</i>)
0	350
1	125
2	475
3	250
4	75

	10	0	2	00	3	00	400		475	55	0	650)
Po	p_1	<i>p</i> ₂	p_3	P_{A}	p_0	p_1	p_2	<i>Р</i> з <i>І</i>	$p_4 p_0$	p_1	p_2	p_3	
	650		750		350	95	50	10	050	1	150	12	50 127
	000												

The turnaround times (derived from the Gantt chart) are

$$T_{TRnd}(p_0) = 1\,100$$
$$T_{TRnd}(p_1) = 550$$
$$T_{TRnd}(p_2) = 1275$$
$$T_{TRnd}(p_3) = 950$$
$$T_{TRnd}(p_4) = 475$$

Therefore the average turnaround time is

 $\underline{T}_{TRnd} = \left(1100 + 550 + 1275 + 950 + 475\right) \ / \ 5 = 4350 \ / \ 5 = 870.$

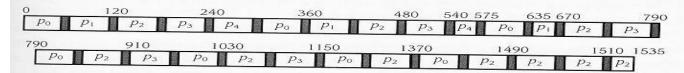
Round Robin w/o considering CTX

Quantum = 50)	345	35				
						2	2		47	-			
						Э	;		25	0		-	
						4	-		75			-	
0	10	00	2	00	3	000	4(00	47	5	55	50	650
Po	<i>p</i> ₁	<i>p</i> ₂	p_3	P ₄	P ₀	p_1	p_2	p_3	p_4	p_0	p_1	p_2	p_3

	p_3	<i>p</i> ₂	p_1	p_0	p_4	p_3	p_2	2 ₁	p_0	24	$p_3 \mid P_3$	D ₂		p_0
50 127	12	50	11)	1050		0	95	0	85	50	7	50	
p_2	p_2	<i>p</i> ₂	p_2	p_0	2	p	p_0	p_3	p_2	p_0	p_3	p_2	p_0	

From the Gantt chart, we determine the wait times (the time until the process first

acquires the processor) to be


$$W(p_0) = 0$$

 $W(p_1) = 50$
 $W(p_2) = 100$
 $W(p_3) = 150$
 $W(p_4) = 200$

So the average wait time is

 $\overline{W} = (0 + 50 + 100 + 150 + 200) / 5 = 500 / 5 = 100.$

Round Robin w/ considering CTX...

RRobin Schedule with Context Switching

The turnaround times (derived from the Gantt chart) are

 $T_{TRnd}(p_0) = 1320$ $T_{TRnd}(p_1) = 660$ $T_{TRnd}(p_2) = 1535$ $T_{TRnd}(p_3) = 1140$ $T_{TRnd}(p_4) = 565.$

Therefore the average turnaround time is

 $\underline{T}_{TRnd} = (1320 + 660 + 1535 + 1140 + 565) / 5 = 5220 / 5 = 1044.$

From the Gantt chart, we determine the waiting times to be

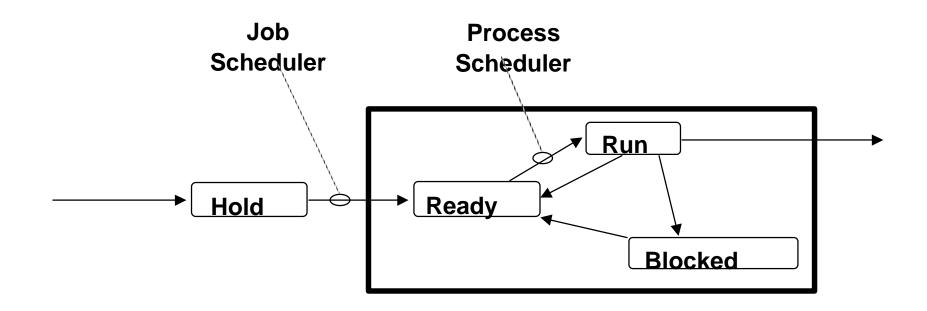
 $W(p_0) = 0$ $W(p_1) = 60$ $W(p_2) = 120$ $W(p_3) = 180$ $W(p_4) = 240.$

So the average wait time is

 $\overline{W} = (0 + 60 + 120 + 180 + 240) / 5 = 600 / 5 = 120.$

CS 3204 - Arthur

Quantum = 50


CTX = 10

i	τ (p _i)	
0	350	
1	125	
2	475	
3	250	
4	75	-

C	2
Ζ	3

Job & Process Scheduling

Dark square contains fixed, maximum number of processes

Job Scheduler & Process Scheduler

Job Scheduler

- Controls when jobs will be allowed to contend the CPU
- Most popular techniques

FIFO	First in, first out
SJF	Shortest job first

Process Scheduler

- Controls when individual jobs (processes) will actually get the CPU
- Only interesting in multi-programming
- Most popular technique is <u>Round Robin</u>
 - Give each process one time slice in turn until complete

Job Scheduling: SJF -: Shortest Job First

Scheduling based on estimated run time.

(Estimating run time is, however, normally impossible!)

- Favors short jobs over long ones
- Tends to
 - reduce number of jobs running, but
 - increases turnaround time for long jobs
- Usually paired with non-preemptive (run-to-completion) process
 scheduling
 - average turnaround time is less than or equal to any other nonpreemptive discipline (including FIFO)

Turnaround and Weighted Turnaround Time

Let: N be number of jobs A_i be arrival time of i-th job F_i be finish time of i-th job

Turnaround time for ith job:

Average turnaround time for ith job:

T = **S**T_i / N

 $T_i = F_i - A_i$

Weighted turnaround time for ith job:

WT_i = (F_i - A_i) / (Service-time)_i Average Weighted Turnaround time: WT = SWT_i / N

Job & Process Sched: Example 1

Assume

job arrival and runtimes as	<u>Job</u>	<u>Arrives</u>	<u>Run Time</u>
shown	1	10.0	2.0
Non-preemptive	2	10.1	1.0
process scheduling (run to completion)	3	10.25	0.25

No I/O or Memory Constraints

When would the jobs finish given that the **job scheduling** algorithm was:

1) FIFO

2) Shortest Job First ?

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u> </u>	<u> </u>
1	10.0				
2	10.1				
3	10.25				

Average Turnaround = T = _____

Average Weighted Turnaround = WT = _____

Example 1 - FIFO Solution (completed)

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u>Turnaround</u>
1	10.0	10.0	12.0	2.0
2	10.1	12.0	13.0	2.9
3	10.25	13.0	13.25	3.0
				7.9

Avg Turnaround time T = 2.63

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	Turnaround
1	10.0			
2	10.1			
3	10.25			

Average Turnaround time T = ____

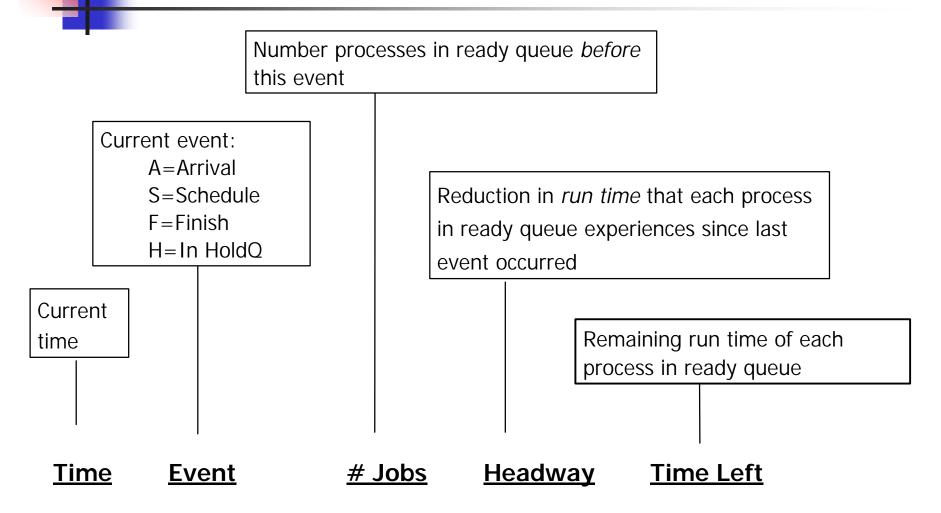
Example 1 - SJF Solution

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u>Turnaround</u>
1	10.0	10.0	12.0	2.0
2	10.1	12.25	13.25	3.15
3	10.25	12.0	12.25	2.0

Average Turnaround time T = 2.38

Processor Sharing (PS) "Theoretical" Scheduling Algorithm

- Limit of RR as time quantum goes to zero.
- Like giving each CPU cycle to a different process, in round robin fashion.
- *N* processes scheduled by PS
 - Each job runs on dedicated *N*-fold slower CPU.
 - Thus, READY = RUNNING.
- CPU Time "shared" equally among processes

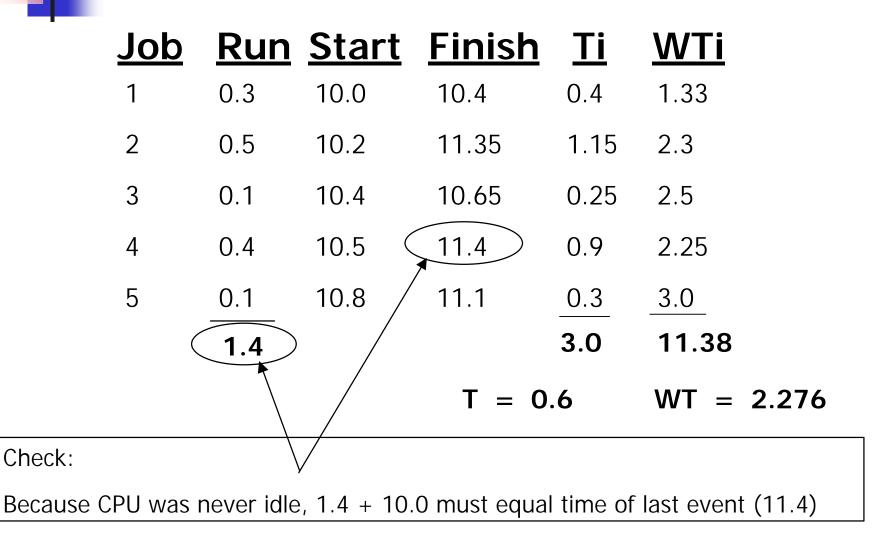


Assume:

MultiprogrammingFIFO Job SchedulingProcessor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	<u>Run Time</u>
1	10.0	0.3
2	10.2	0.5
3	10.4	0.1
4	10.5	0.4
5	10.8	0.1

Definitions


Example 2 Continued

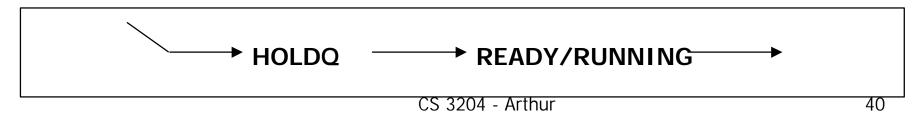
<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>Headway</u>	<u>Time</u>	<u>e Left</u>
10.0	1 A,S			1	0.3
10.2	2 A,S	1	0.2	1	0.1
				2	0.5
10.4	1 F	2	0.1	2	0.4
	3 A,S			3	0.1
10.5	4 A,S	2	0.05	2	0.35
				3	0.05
				4	0.4
10.65	3 F	3	0.05	2	0.3
				4	0.35

Example 2 Continued...

<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>Headway</u>	<u>Tin</u>	<u>ne Left</u>
10.8	5 A,S	2	0.075	2	0.225
				4	0.275
				5	0.1
11.1	5 F	3	0.1	2	0.125
				4	0.175
11.35	2 F	2	0.125	4	0.05
11.40	4 F	1	0.05		

T and W for Example 2

Scheduling Example 3


Assume:

FIFO Job Scheduling 100 K Main Memory

5 Tape Drives

Processor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	<u>Run Time</u>	Memory	Tapes
1	10.0	0.3	10	2
2	10.2	0.5	60	1
3	10.4	0.1	50	4
4	10.5	0.4	10	2
5	10.8	0.1	30	3

Example 3 Continued

<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>Hway</u>	<u>MM</u>	<u>Tapes</u>	<u>Time</u>	<u>Left</u>
10.0	1 A,S			90	3	1	0.3
10.2	2 A,S	1	0.2	30	2	1	0.1
						2	0.5
10.4	1 F	2	0.1	40	4	2	0.4
	3 A,H						
10.5	4 A,S	1	0.1	30	2	2	0.3
						4	0.4
10.8	5 A,H	2	0.15	30	2	2	0.15
						4	0.25

Example 3 Continued ...

<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	<u>Time L</u>	<u>eft</u>
11.1	2 F	2	0.15	90	3	4 0	.1
	5 S			60	0	5 0	.1
11.3	5 F	2	0.1	90	3	3 0	.1
	4 F			100	5		
	3 S			50	1		
11.4	3 F	1	0.1	100			

T and W for Example 3

<u>Job</u>	<u>Run</u>	<u>Arrives</u>	<u>Finish</u>	<u>Ti</u>	<u>WTi</u>
1	0.3	10.0	10.4	0.4	1.33
2	0.5	10.2	11.1	0.9	1.8
3	0.1	10.4	11.4	1.0	10.0
4	0.4	10.5	11.3	0.8	2.0
5	0.1	10.8	11.3	0.5	5.0
				3.6	20.13

T = 0.72 WT = 4.026

Scheduling Example 4

Assume:

- FIFO Job Scheduling 100 K Main Memory
- 5 Tape Drives

Processor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	<u>Run Time</u>	Memory	Tapes
1	1.0	0.5	30	2
2	1.2	1.0	50	1
3	1.3	1.5	50	1
4	1.4	2.0	20	2
5	1.7	0.5	30	3
6	2.1	1.0	30	2

Example 4 Continued

<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	Tim	<u>e Left</u>
1.0	1 A,S			70	3	1	0.5
1.2	2 A,S	1	0.2	20	2	1	0.3
						2	1.0
1.3	3 A,H	2	0.05	20	2	1	0.25
						2	0.95
1.4	4 A,S	2	0.05	0	0	1	0.2
						2	0.9
						4	2.0
1.7	5 A,H	3	0.1	0	0	1	0.1
						2	0.8
						4	1.9
2.0	1 F	3	0.1	30	2	2	0.7
						4	1.8

Example 4 Continued ...

<u>Time</u>	<u>Event</u>	<u># Jobs</u>	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	<u>Time Left</u>
2.1	6 A,S	2	0.05	0	0	2 0.65
						4 1.75
						6 1.0
4.05	2 F	3	0.65	50	1	4 1.1
	3 S			0	0	6 0.35
						3 1.5
5.1	6 F	3	0.35	30	2	4 0.75
						3 1.15
6.6	4 F	2	0.75	50	4	3 0.4
	5 S			20	1	5 0.5
7.4	3 F	2	0.4	70	2	5 0.1
7.5	5 F	1	0.1	100	5	

T and W for Example 4

<u>Job</u>	<u>Run</u>	<u>Arrives</u>	<u>Finish</u>	<u>Ti</u>	<u>WTi</u>
1	0.5	1.0	2.0	1.0	2.0
2	1.0	1.2	4.05	2.85	2.85
3	1.5	1.3	7.4	6.1	4.06
4	2.0	1.4	6.6	5.2	2.6
5	0.5	1.7	7.5	5.8	11.6
6	2.1	2.1	5.1	3.0	3.0
				23.95	26.11
-			4.05		

T = 3.99 WT = 4.35