Chapter 6

!'_ Process Management

Introduction

= Scenario
= One process running
= One/more process performing 1/0
= One/more process waiting on resources

« Most of the complexity stems from the need
to manage multiple processes

Fall 1999 : CS 3204 - Arthur 2

Introduction

« Process Manager
=« CPU sharing
=« Process synchronization
=« Deadlock prevention

= Each process has a Process Descriptor
=« Describes complete environment for a process

Fall 1999 : CS 3204 - Arthur

Process Descriptor

FIELD

DESCRIPTION

Internal process name

An internal name of the process, such as an integer or table index,
used in the operating system code.

State

The process’s current state.

Onwner

A process has an owner (identified by the owner’s internal
identification such as the login name). The descriptor contains a field
for storing the owner identification.

Parent process
descriptor

A pointer to the process descriptor of this process’'s parent.

List of child process
descriptors

A pointer to a list of the child processes of this process.

List of reusable
resources

A pointer to a list of reusable resource types held by the process. Each
resource type will be a descriptor of the number of units of the
Iesource.

List of consumable
resources

Similar to the reusable resource list (see Section 6.3.2).

List of file descriptors

A special caze of the reusable resource list.

Message queue

A special case of the consumable resource list.

Protection domain

A description of the access rights currently held by the process [see
Chapter 14).

CPU status register
content

A copy of each of the CPU status registers at the last time the process
exited the minning state.

CPU general register
content

A copy of each of the CPU general registers at the last time the process
exited the running state.

Fall 1999 : CS 3204 - Arthur

Process Address Space

=« Defines all aspects of process computation
= Program
= Variables

5 [}

= Address space Is generated/defined by
translation

Fall 1999 : CS 3204 - Arthur

Creating an executable program

Separate objects

each relative to O
Source

Modules /

b_’ Relocatable One Iarge program
Modules / 0-X

A

- (X+
fp\hsolute Y - (X+Y)
rogram

A /
Executable

L Maps relative address space to physical
memory location

— Relocates modules one behind other
Generates separate & Relocates addresses of all but first
object code modules # Resolves external reference to
library calls and external modules

Fall 1999 : CS 3204 - Arthur

Fastest

Access Speed

Slowest

A

Basic Memory Hierarchy

PC

'F?H 1

Cache memory

‘ Primary Memory, M, |

Secondary Memory, M,

Fall 1999 : CS 3204 - Arthur

Basic Memory Hierarchy...

=« At any point in the same program, element can be in

= Secondary memory Ms
= Primary memory Mp
=« Registers Mg

=« Consistency is a Problem
= Ms? Mp? Mg (code vs data)
-~ When does one make them consistent ?
« How ?

Fall 1999 : CS 3204 - Arthur 8

Consistency Problem

=« Scheduler switching out processes —Context Switch

= Is Instruction a Problem ???
= NO
= Instructions are never modified
= Separate Instruction and Data space
= Therefore, Mg; = Mp; = Mg;

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur

Consistency Problem...

= |s Data a Problem ???

= YES
= Variable temporarily stored in register has value added to it

« Therefore, Mr; ? Mp;

= On context switch, all registers are saved
=« Therefore, current state is saved

Fall 1999 : CS 3204 - Arthur 10

Sample Scenario...

= Suppose MOV X Y ”instruction is executed
V-t ZSMPy ? Msy

= On context switch, is all of a process ’memory
flushed to Ms ?

=« No, only on page swap

& Hence, eanrocess — (MR +MS) + ()

=« Note:

= Flushing of memory frees it up for incoming process
=> Page Swap

Fall 1999 : CS 3204 - Arthur

11

Process States

= Focus on Resource
Management & Process
Management

« Recall also that part of the
process environment is its
state

Fall 1999 : CS 3204 -

Running

Done

request
request Schedule
Start

Blocked Ready

State Transition Diagram

Arthur

12

Process States...

QO OO ©

When process enters Ready “state, it must
compete for CPU. Memory has already
been allocated

Running <3>
Process has CPU Done

request

Scheduic@

Start

Process requests resource that is request
immediately available = NO blocking <J>

Process requests resource that is NOT yet Blocked <5> Ready
available

State Transition Diagram
Resource allocated,

memory re-allocated?

Fall 1999 : CS 3204 - Arthur 13

= 2 types of Resources
« Reusable (Memory)
« Consumable (Input/Time slice)

Reguest

S

v Resource Queue

Process requesting resource unit(s)
& Get it, or

& Block => Stay in Queue

Eesource Pool

Fall 1999 : CS 3204 - Arthur

Resources & Resource Manager

-~ Units of Resource R

14

Resource Descriptor

=« Each Resource R has a Resource Descriptor associated
with it (similar to the process)

=> there iIs a “Status’’for that Resource, and
=> a Resource Manager to manage it

Iaidp Ul d NIEsUULLLe PesGIIpLor

FIELD DESCRIPTION

Internal resource An internal name for the resource used by the operating system code.

name /dev/...

Total units The number of units of thls resource type CDIIflg‘LT.IEd into the system 6
» Available units The number of units currenﬂ}; avallable 3

List of available The set of available uniis of this resource type that are available for use by

units prcrcesses A, B, C

List of blocked | The list c}f pmt:esses that have a penchng request for units of this resource

processes | type. Onlyif*=0

Fall 1999 : CS 3204 - Arthur 15

Process Hierarchy

OS
init
S istem Process Svystem Pmrcss Dlher PlULtﬁ&bt‘:—
getty :':; ;

shell

=« Conceptually, this is the way in which we would like
to view it

=« Root controls all processes i.e. Parent

Fall 1999 : CS 3204 - Arthur

16

Creating Processes

=« Parent Process needs abllity to
= Block child
= Activate child
= Destroy child
= Allocate resources to child

« True for User processes spawning child

=« True for OS spawning i nit, getty, etc.

=« Process hierarchy a natural,
If f or k/exec commands exist

Fall 1999 : CS 3204 - Arthur

17

UNIX f or Kk command

= For kUNIX

=« Shares text
=« Shares memory
=~ Has its own address space

« Cannot communicate with parent by referring variable
stored in code

= Earlier definition: For Kconway

« Shares text

~ Shares resources

« Shares address space

« Process can communicate thru variables declared in code

Fall 1999 : CS 3204 - Arthur

18

Cooperating Processes

Prog
/ proc_A(){ proc_B(){
X,y :int while (TRUE) { while (TRUE) [
~ {compute section Al); L :
Porc A Lpeiersin)
refx &y update(x) ; {compute section B1>:
[Proc B <cr.:}mpute section A22; uPdate[}r];
- ref x & y retrieve(y); {compute section B2):
Fork “A”’ } |
Fork “B”” } }
N

Now processes A & B, share address space & can
communicate thru declared variables

Problem ???

A can write 2 times before B reads

Fall 1999 : CS 3204 - Arthur 19

Synchronizing Access to Shared Variables

Prog
« Shared address space allows 4
communication through declared X,y - int
variables automatically " Porc A
refx &y
[Proc B
= How then, can we synchronize access L refx&y
to them? Fork “A””
Fork “B””
N

= Need Sychronization Primitives

=> JOIN & QUIT

Fall 1999 : CS 3204 - Arthur 20

Fork, Join & Quit - Conway

=« In addition to the “Fork(proc)’’command, Conway
also defined system calls to support process
synchronization

= Join (count)
-~ Un-interruptable
Decrement count;
If count ? O then Quit, else Continue

& QUlt
=« Terminate process

Fall 1999 : CS 3204 - Arthur

21

Fork, Join, Quit example

LO:

L1:

| B

§ G s

count = 2;

{compute Al>;

write(x) :

FORK(L2) ;

<compute AZ2>;

JOIN(count) :
read(vy) ;
QUIT() »

read(x) ;

<compute B1>;

write(y) ;
FORK(L3) :

goto L1:;

<compute B2>:

goto LO;

Code Repeats
<<!>>Cntz72
<Al>

w(X)

Fall 1999 : CS 3204 - Arthur

<Al>

W(x)

R(X)

<B1> <A2>

W(Y)

R(YY) <B2>
22

A Simple Parent Program (Revisit)

ffinclude {gys/wait.h>
ffdefine NULL 0

int main (void) {
if (fork() == 0){ /* This is the child process */

execvel("child" , NULL ,NULL) ;

exit(0) /* Should never get here, terminate */
}
/* Parent code here */
printf("Process[%d]: Parent in execution ...\n", getpid());
sleep(2);
if{wait (NULL) > 0) /* Child terminating */
printf ("Process [%d]: Parent detects terminating child \n",
getpid());

printf("Process([%d] : Parent terminating ...\n", getpid()});

Fall 1999 : CS 3204 - Arthur

23

Spawning A Child Different From Parent

= Suppose we wish to spawn a child that is different

from the parent
fork
execve(..)

=« OS & 1nt & getty & shell

/////,, shell

getty

Init

—

OS

Fall 1999 : CS 3204 - Arthur 24

Factoring in additional Control Complexities

=« Recall:
= A parent process can suspend a child process

=« Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

= We need 2 more states
-~ Ready suspended
- Blocked suspended

Fall 1999 : CS 3204 - Arthur 25

Process State diagram reflecting Control

Running

Done
Legnesy - Not Blocked

o _ - Suspended
suspend
Start Schedule - No memory
\\ suspend
activate
- Not blocked readyActive readySuspended
- Not suspended Allocate Allocate
- Has memory suspend — - Blocked
activate - Suspended
blockedActive blockedSuspended - No memory
- Blocked

- Not suspended

- No memory

Fall 1999 : CS 3204 - Arthur 26

Give It a thought...

Why can a process NOT go from
Ready Active "to Blocked Active”
or Blocked Suspended *?

Fall 1999 : CS 3204 - Arthur

27

