Chapter 4

!'_ Computer Organization

Von Neuman Concept

Stored program concept

General purpose computational device driven by
Internally stored program

Data and instructions look same i.e. binary

Operation being executed determined by HOW we
look at the sequence of bits

& Fetch
= Decode View bits as instruction
~ EXxecute

Ny

Data might be fetched as aresult of execution

CS 3204 - Arthur 2

Von Neuman Architecture

&5

&5

&5

CPU
« ALU
« Control Unit

/0 Buses
Memory Unit
Devices

The von Neumann Machine Architecture

Central Processing Unit (CPU)

Arithmetic-Logical Unit

[F=ite seE=L F S
=== T Address bus

Data Bus

Primary Memory Unit
(Executable Memory)

CS 3204 - Arthur

Device Controller
and
Device

Control Unit

Von Neuman Machine Architecture

CPU = ALU + Cntrl Unit

ALU e Cntrl Unit
The von Neumann Machine Architecture
. . - fetch
- Functional Unit Central Processing Unit (CPU) _ decode
. =
: ;L\r:'lsttr:lrfetltcl)cn;efoglc Arithmetic-Logical Unit Cortol Rl - execute
- Registers ALU

(=l gy - TRISEl
+ Intermediate storage s Ll P) EAddiessBUs TRt 4k AR

Data Bus

[Address Bus / Data Bus wires
over which Instr / data is
Buses | transferred from memory to ALU

| Von Nuemann Bottleneck

CS 3204 - Arthur 4

CPU: ALU Component

FIGURE 4.3
A Generic Arithmetical-logical Unit

Right Operand

Left Operand l

General|Registers Function|Unit Status Registers

Result

= Assumes instruction format: OP code, LHO, RHO

= Instruction / data fetched & placed in register
= Instruction / data retrieved by functional unit & executed
= Results placed back in registers

=« Control Unit sequences the operations

CS 3204 - Arthur

CPU: Control Unit Component

RESavRiearaiGalinis)
The PC, IR, and Memory IR => Instruction Register

[

Fetch Unit

PC 3050

load R3,b 3046
load R4, c 3030
add R3,R4 | 3054
store R3, a 3058

Von Nuemann
Execution Cycle <

Decode Unit

IR load R4, c

Execule Unit

Control Unit Primary Memory

= Fetch Unit
= Get instruction at location pointed to by PC and place in IR

= Decode Unit
= Determine which instruction & signal hardware that implements it

= Execute Unit
« Hardware for instruction execution (could cause more data fetches)

CS 3204 - Arthur 6

Fetch —Execute cycle

FIGURE 4.5

The Fetch-Execute Cycle

PC = <machine start address.>;
IR = memory [PC];
haltFlag = CLEAR;

while (haltFlag not SET during execution) {
Decode(IR)

execute (IR) ;
PC = PC + 1;
IR = memory [PC] ;

Fetch

CS 3204 - Arthur 7

OS boot-up...

= How does the system boot up ?

=~ Bootstrap loader
« OS
= Application

CS 3204 - Arthur

A Bootstrap Loader

The power-up sequence

| oad PC,

FI XED_LOC

—

Address of BS Loader

Where FIXED_LOC addresses the bootstrap loader (in ROM).

The bootstrap loader has the form:

| oad R1,
| oad R2,

| oop: read R1,
store RI1,
I ncr R1
bl eq R1,
br Fl XED

=0 \
= LENGTH_OF_TARGET

FI XED_DI SK_ADDRESS| Reads
[FI XED DEST, Ri] OS In
R2, |oop)

DEST —

CS 3204 - Arthur

Branches to OS

Fetch
Decode

Execute

Memory Unit

Memory
Unit

The von Neumann Machine Architecture

Central Processing Unit (CPU)

Arithmetic-Logical Unit

[f=l g gy Rl
T Address Bus

Conftrol Unit

Primary Memory Unit
(Executable Memory)

Device Controller
and

Device

CS 3204 - Arthur

10

Memory Unit

= Memory Unit contains

&

&

&

&

&

Memory
- Instructions & Data
MAR (Memory Address Register)
MDR (Memory Data register)
CMD (Command Register)
Get instruction at location pointed to by PC and place

—Fld BLUS ‘ |

Device Controller
and

Primary Memory Unit
(Executable Memory)

Device

CS 3204 - Arthur

in IR

11

= Read from Memory
- MAR & MemAddr

Memory Access

FIGURE 4.6

The Memory Organization

- CMD & ‘Read OP' (from IR)

= EXecute

MDR & Men|{ MAR]

= Write to Memory
- MAR & MemAddr

- CMD & ‘Wite OP' (from IR)

= EXecute
Meni{ MAR | =« MDR

CS 3204 - Arthur

MAR

MDR

Cmd

write I

1234

§—K bits —)|

98765

12

Device & Device Controller

S
von Neumann Machine Architecture
: . Device &
Central Processing Unit (CPU) ”
Device
Arithmetic-Logical Unit Controller

Control Unit

(=l gy - TRISEl
EENES N S

In OS

e

Device Driver

Data Busg /\

Device Controller
and

Primary Memory Unit

(Executable Memory) :
Device

/ Interfaces

CS 3204 - Arthur

Device Controller

Device

13

Device Controller-Software

The Device-Controller-Software Relationship

Bus

Application Software

A
© | High-Level
; EED Machme

S

Relationship

Device

CS 3204 - Arthur

PCI

Device driver

Standard Interface

SCSI

Device Controller I /

14

FIGURE 4.8

The Device Controller Interface

Device Controller Interface

Driver interrogated these
to check status of device

Busy Done

Error Code

Driver places
command if
status “‘Done”’

‘ Bus Connections

ommana JBl —siatus |

Interface to driver

Device Controller

CS 3204 - Arthur

15

Device Controller

=« Device controller is a processor and allows 2 parts of
the process to proceed concurrently

Program Controller

|

Wwite Prints info

/\

CS 3204 - Arthur 16

Device Driver Interface

Interface presented by
Driver to Application
program thru OS

OS could provide higher level
operations to application than the
one Driver presentsto it

—

write(...)
_¢—ﬁ
Terminal Printer Disk
Controller/Driver Driver Driver Driver
Interface — >
Terminal Printer Disk
_ Controller Controller Controller
Controller/Device
Interface >
Terminal Printer Disk

CS 3204 - Arthur

17

How do Interrupts factor in ?

= Scenario (1)

= Program:
whi | e device flag busy {}

== Busy wait - consumes CPU cycles

= Scenario (2)

= Program:
while (Flag '= wite) {
sleep(X))
}

==If write available while program sleeping - inefficient

CS 3204 - Arthur

18

How do Interrupts factor in ? ...

= Scenario (3)
= Program: Driver:

I ssues “write” . Suspend program until
write is completed,

then program is
unsuspended

ThisisInterrupt-driven

CS 3204 - Arthur

19

Interrupts Driven Service Request

=« Process is suspended only if driver/controller/device
cannot service request

« If a process is suspended, then, when the suspended
process ”service request can be honored
= Device interrupts CPU
= OS takes over
= OS examines interrupts
=« OS un-suspends the process

=« Interrupts
=« Eliminate busy wait
= Minimizes idle time

CS 3204 - Arthur 20

Interrupts ...

Interrupt Handler in OS: di sables interrupts

| nt errupt processed

enabl es interrupts

What if multiple devices (or 2"d device) sends
interrupt whilethe OSishandling prior interrupt ?

If priority of 2nd
interrupt higher than Resumption of

1st then 1st interrupt ond interruot handled handling 1st
suspended I::> P ::> interrupt

CS 3204 - Arthur 21

