Chapter 2

Using the Operating systen

Resource Descriptors

= The OS implements Abstraction of each of this
=« Unit of Computation is a process”
=« Unit of information storage is a file

= For each resource abstraction (file, memory,
processor), OS maintains a resource descriptor

= Resource descriptor:
= ldentify resources
= Current state
= What process it is associated with, if it is allocated
= Number and identity of available units

Fall 1999 : CS 3204 - Arthur

Resource Descriptors...

= File descriptor:
=« File name
= File type (Sequential, Indexed, ...)
= Owner
=~ State (Open, Closed)
=« Extents (mapping to the physical storage)

=« Process descriptor
= Object program (Program text)
= Data segment
=« Process Status Word (PSW) —executing, waiting, ready
=~ Resources acquired

Fall 1999 : CS 3204 - Arthur

Process & Process Descriptor

Contents of a descriptor maps directly to the Abstract Machine
provided by the OS

Static variables

FIGURE 2.2

A Process

ode

s
o
R

§ x
| Resource B

, status, .
Files,

ime priority

Abstract Machine Environment

ce provided by OS

Fall 1999 : CS 3204 - Arthur

One Program / Multiple Instantiations

Sequential Operation

3l 3 SRone
I'race for P1) G

Distinct Trace for P2 e 15 ’%g%?ﬁx
acution paths Trace for P3
§ Note:
Process 1

—> P T Each Process has
RES \—>(T own descriptor

AR — =3¢ - text (shared), C

Only one proces
Bieecspie active at a time

Shared Program Text . _ (context switchin

Process 3

Fall 1999 : CS 3204 - Arthur

Process

= 3 units of computations:

~ Process
« Thread
« Object

=« Process: heavy-weight ’process
= 0OS overhead to create and maintain descriptor is expensiv

« Thread: “fight-weight”’process
- 0OS maintains minimal internal state information

« Objects: heavy-weight *process
« Instantiation of a class

Fall 1999 : CS 3204 - Arthur

UNIX Processes

= Dynamically allocated variables

«Runtime stack

Tape d
mem

FIGURE 2.4
UNIX Processes

Abstract Machine Environment [

Fall 1999 : CS 3204 - Arthur

Thread

&

&

&

&

Thread: light-weight process
« 0OS maintains minimal internal state information

Usually instantiated from a process

Each thread has its OWN unique descriptor
« Data, Thread Status Word (TSW)

SHARES with the parent process (and other threads)
= Program text
= Resources
=« Parent process data segment

Fall 1999 : CS 3204 - Arthur

Thread ...

FIGURE 2.5
A Process and a Family of Threads

Unique for each thread

Minimal info

=> Light-weight

R

R s

ch thread is
aring/executing the
ACT same code

] i
e R
MBS A

Thread Status -

e T

SRC RS e
L

R

e e i
ST e
e e

_ |Program |
Text | Dala

2 2 =5
e -~ =]
P PR
’.gi\x.-s%«,s oﬂb.«'.»'wm'&'\»'fqifm’g e e
i £
2

2d components

Heavyweight Pmccsif

1 copy of
‘iptor in OS

Fall 1999 : CS 3204 - Arthur

Threads... example

Multiple lightweight processes; one resource alloc

SR B => Only one physical resource has to be
Using Threads maintained by OS

=> Less OS overhead, better response
Application N

nipulated by
ividual threads

Window Threads

Each thread manipulates part
the physical screen, i.e. a win

Windows

gle resource ——*» Physical Screen

Threads share access to physical screen
- Screen resource allocated to heavyweight process

Fall 1999 : CS 3204 - Arthur

Objects

« Objects:
« Derived from SIMULA ©7
=« Defined by classes
= Autonomous

=« Classes
=« Abstract Data Types (ADT)

~ Private variables

=« An instantiation of a class is an Object

Fall 1999 : CS 3204 - Arthur

Objects

=« Objects are heavy-weight processes
=« have full descriptors

= Object communicate via Message passing

= OOP:
= Appeals to intuition

= Only recently viable
-~ Overhead of instantiation and communication

Fall 1999 : CS 3204 - Arthur

Computational Environment

= When OS is started up

« Machine abstraction created
- Hides hardware from User and Application

« Instantiates processes that serve as the user interface or “Shel
- Shell (Ul) instantiates user processes

= Consider UNIX:
UNIX = getty =—— shell == user process

= What are the advantages & disadvantages of so many proce
just to execute a program ?

Fall 1999 : CS 3204 - Arthur

Advantages & Disadvantages

=« Advantages...

Each process (UNIX, getty, shell, ...) has its own protected “exect
environment

=« |If child process fails from fatal errors, no (minimal) impact on
parent process

=« Disadvantages...
OS overhead in

= Maintaining process status
= Context switching

Fall 1999 : CS 3204 - Arthur

Process Creation —UNIX fork()

=« Creates a child process that is a Thread”

=« Child process is duplicate (initially) of the parent process —
except for the process id

= Shares access to all resources allocated at the time of
Instantiation and Text

=« Has duplicate copy of data space BUT is its own copy and it
modify only its own copy

If a child Process requests / receives a resource,
does the parent or other children have access to

M

Fall 1999 : CS 3204 - Arthur

Process creation - fork()... example

I nt pidVval ue;

pi dval ue = fork(); /* creates a child process

I f(pidvalue == 0) {
/* pidvValue is ZERO for child, nonzero for parent
/* The child executes this code concurrently with Parent
chil dsPl ay(..); /* A locally-liked procedure
exit(0); /* Term nate the child

}

/* The Parent executes this code concurrently with the child

wait(..); /* Parent waits for Child s to term nate

UNIX process creation : fork() facility

Fall 1999 : CS 3204 - Arthur

Process creation —Unix fork()...

Child/Parent code executed based on the pid value in “focal’”d:
space
= For parent process, pid value returned is that of the child (non-ze
« For child process, pid value returned is O

pidvalue returned to parent process is non-Zero

Therefore, fork() creates a new LW process

Parent process (HW)
Q fork()
Q Child process (LW)

Initial process

Fall 1999 : CS 3204 - Arthur

Process Creation —Unix exec()

« Turns LW process into autonomous HW process

= fork()
- Creates new process

= exec()
= Brings in new program to be executed by that process

= New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “&xec &d’’code overlays “&xec hg’’code

Fall 1999 : CS 3204 - Arthur

Process creation —exec()... example

i nt pid;
/* Setup the argv array for the child */
if((pid = fork()) == 0) { /* Create a child
/* The child process executes changes to its own program
execve(new programout , argv , 0);
/*Only return froman execve call if it fails
printf(“Error in execve’);
exit(0); /* Term nate the child
}
/* Parent executes this code */
wait(..); /* Parent waits for Child s to term nate

UNIX process creation: exec() facility

Fall 1999 : CS 3204 - Arthur

