
Chapter 10
Deadlock

What is Deadlock?
• Two or more entities need a resource to make progress, but will

never get that resource

• Examples from everyday life:

– Gridlock of cars in a city

– Class scheduling: Two students want to swap sections of a
course, but each section is currently full.

• Examples from Operating Systems:

– Two processes spool output to disk before either finishes,
and all free disk space is exhausted

– Two processes consume all memory buffers before either
finishes

Deadlock Illustration

A set of processes is in a DEADLOCK state when every
process is waiting for an event initiated by another

process in the set

A set of processes is in a DEADLOCK state when every
process is waiting for an event initiated by another

process in the set

Process A

Request X

Request Y

Release X

Release Y

Process A

Request X

Request Y

Release X

Release Y

Process B

Request Y

Request X

Release Y

Release X

Process B

Request Y

Request X

Release Y

Release X

Deadlock Illustration

• A requests & receives X
• B requests & receives Y
• A requests Y and blocks
• B requests X and blocks

The “Deadly Embrace”

X Y

A

B

Terminology
• Preemptible vs. Non-preemptible

• Shared vs. Exclusive resource
– Example of Shared resource: File
– Example of Exclusive resource: Printer

Terminology …
• Reentrant vs. Non-reentrant

– Reentrant = shared code
– Non-reentrant = exclusively used code

– Which type of code do you write?
– Why is the other type useful?

Terminology …

• Indefinite postponement
– Job is continually denied resources needed to make

progress

Example: High priority processes keep CPU busy 100% of
time, thereby denying CPU to low priority processes

Three Solutions to Deadlock

#1: Mr./Ms. Conservative (Prevention)

time

Job waits
for all resources

Job starts Job finishes

R2
R1 WAIT

“We had better not allocate if it could ever cause deadlock”

| R1 in use |

| R2 in use |

Process waits until all needed resource free
Resources underutilized

Three Solutions to Deadlock …

#2: Mr./Ms. Prudent (Avoidance)

time

Job starts Job first
needs R1

Job finishes

R2
R1

Job first
needs R2

Unsafe Safe

WAIT

“If resource is free and with its allocation we can still
guarantee that everyone will finish, use it.”

Better resource utilization
Process still waits

Three Solutions to Deadlock…

#3: Mr./Ms. Liberal (Detection/Recovery)

time

Job starts Job finishes

R2
R1

Job restarts

Deadlock detected

“If it’s free, use it -- why wait?”

Good resource utilization, minimal process wait time
Until deadlock occurs….

Names for Three Methods on Last Slide

1) Deadlock Prevention
– Design system so that possibility of deadlock is avoided a

priori

2) Deadlock Avoidance
– Design system so that if a resource request is made that

could lead to deadlock, then block requesting process.

– Requires knowledge of future requests by processes for
resources.

3) Deadlock Detection and Recovery
– Algorithm to detect deadlock

– Recovery scheme

4 Necessary Conditions for Deadlock

• Mutual Exclusion
– Non-sharable resources

• Hold and Wait
– A process must be holding resources and waiting for others

• No pre-emption
– Resources are released voluntarily

• Circular Wait

R1 R2

P1

P2

Deadlock Prevention

Deny one or more of the necessary conditions

• Prevent “Mutual Exclusion”
– Use only sharable resources

=> Impossible for practical systems

Deadlock Prevention …
• Prevent “Hold and Wait”

(a) Preallocation - process must request and be
allocated all of its required resources before it can
start execution

(b) Process must release all of its currently held
resources and re-request them along with request
for new resources

=> Very inefficient

=> Can cause "indefinite postponement": jobs
needing lots of resources may never run

Deadlock Prevention …

• Allow “Resource Preemption”
– Allowing one process to acquire exclusive rights to

a resource currently being used by a second
process

=> Some resources can not be preempted without
detrimental implications (e.g., printers, tape drives)

=> May require jobs to restart

Deadlock Prevention …

• Prevent Circular Wait
– Order resources and

– Allow requests to be made only in an increasing
order

Preventing Circular Wait

Process:

Request:

A B C D A B C D

W X Y Z X Y Z W

A / W

B / X

C / Y

D / Z

Impose an ordering on Resources: 1 W
2 X
3 Y
4 Z

Process D cannot request resource W
without voluntarily releasing Z first

After first 4 requests:

Problems with Linear Ordering Approach

(1) Adding a new resource that upsets ordering
requires all code ever written for system to be
modified!

(2) Resource numbering affects efficiency

=> A process may have to request a resource well
before it needs it, just because of the requirement
that it must request resources in ascending
sequence

Deadlock Avoidance

• OS never allocates resources in a way
that could lead to deadlock

=> Processes must tell OS in advance
how many resources they will
request

Banker’s Algorithm

• Banker's Algorithm runs each time:
– a process requests resource - Is it Safe?

– a process terminates - Can I allocate released resources
to a suspended process waiting for them?

• A new state is safe if and only if every process can
complete after allocation is made

=> Make allocation, then check system state and
de-allocate if safe/unsafe

Definition: Safe State

• State of a system

– An enumeration of which processes hold, are waiting for,
or might request which resources

• Safe state

– No process is deadlocked, and there exists no possible
sequence of future requests in which deadlock could occur.

or alternatively,

– No process is deadlocked, and the current state will not
lead to a deadlocked state

Deadlock Avoidance

Safe State:
Current Loan Max Need

Process 1 1 4

Process 2 4 6

Process 3 5 8

Available = 2

Deadlock Avoidance

Unsafe State:
Current Loan Max Need

Process 1 8 10

Process 2 2 5

Process 3 1 3

Available = 1

Safe to Unsafe Transition

Current Safe State:
Current Loan Maximum Need

Process 1 1 4

Process 2 4 6

Process3 5 8 Available = 2

Suppose Process 3 requests and gets one more resource
Current Loan Maximum Need

User1 1 4

User2 4 6

User3 6 8 Available = 1

Current state being safe does not
necessarily imply future states are safe

Essence of Banker's Algorithm

• Find an allocation schedule satisfying maximum claims
that allows to complete jobs
=> Schedule exists iff safe

• Method: "Pretend" you are the CPU.

1. Scan table (PCB?) row by row and find a job that can finish

2. Add finished job's resources to number available.

Repeat 1 and 2 until
– all jobs finish (safe), or
– no more jobs can finish, but some are still “waiting” for their

maximum claim (resource) request to satisfied (unsafe)

Banker's Algorithm
Constants

int N {number of processes}

int Total_Units

int MaximumNeed[i]

Variables
int i {denotes a process}

int Available

int CurrentLoan[i]

boolean Cannot_Finish[i]

Function
Claim[i] = MaximumNeed[i] - CurrentLoan[i];

Banker's Algorithm

Begin
Available = Total_Units;

For i = 1 to N Do
Begin
Available = Available - CurrentLoan [i];
Cannot_Finish [i] = TRUE;
End;

i = 1;
while (i <= N) Do

begin
If (Cannot_Finish [i] AND Claim [i] <= Available)

Then Begin
Cannot_Finish [i] = False;
Available = Available + CurrentLoan [i];
i = 1;
End;

Else i = i+1;
End;

If (Available == Total_Units)
Then Return (SAFE)
Else Return (UNSAFE);

End;

Begin
Available = Total_Units;

For i = 1 to N Do
Begin
Available = Available - CurrentLoan [i];
Cannot_Finish [i] = TRUE;
End;

i = 1;
while (i <= N) Do

begin
If (Cannot_Finish [i] AND Claim [i] <= Available)

Then Begin
Cannot_Finish [i] = False;
Available = Available + CurrentLoan [i];
i = 1;
End;

Else i = i+1;
End;

If (Available == Total_Units)
Then Return (SAFE)
Else Return (UNSAFE);

End;

Initialize

Find schedule to
complete all jobs

Banker's Example #1

Total_Units = 10 units
N = 3 processes

Process:

Request:

1 2 3 1

2 3 4 1

Process Current Maximum Claim Cannot
Loan Need Finish

1 4

2 4

3 8

Available =
i =

Can the fourth request be satisfied?

Banker's Example #2

Total_Units = 10 units
N = 3 processes

Process:

Request:

1 2 3 1

4 1 1 2

Available =
i =

Can the fourth request by satisfied?
Process Current Maximum Claim Cannot

Loan Need Finish
1 10

2 6

3 3

Banker's Algorithm: Summary

(+) PRO's:
? Deadlock never occurs.

? More flexible & more efficient than deadlock prevention. (Why?)

(-) CON's:
? Must know max use of each resource when job starts.

=> No truly dynamic allocation

? Process might block even though deadlock would never occur

Deadlock Detection

Allow deadlock to occur, then recognize that it existsAllow deadlock to occur, then recognize that it exists

• Run deadlock detection algorithm whenever locked
resource is requested

• Could also run detector in background

Resource Graphs

Graphical model of deadlock
Nodes:

Edges:

1) Processes 2) Resources

Pi Rj

Pi Rj1) Request

2) Allocate Pi Rj

Resource Graphs: Example

P1R1

P2 R2

P1 holds 2 units of R1
P1 holds 1 unit of R2
R1 has a total inventory of 4 units
P2 holds 1 unit of R1
P2 requests 1 unit of R2 (and is blocked)

Operations on Resource Graphs:
An Overview

1) Process requests resources: Add arc(s)

2) Process acquires resources: Reverse arc(s)

3) Process releases resources: Delete arc(s)

Graph Reductions

• A graph is reduced by performing operations 2 and 3 (reverse,
delete arc)

• A graph is completely reducible if there exists a sequence of
reductions that reduce the graph to a set of isolated nodes

• A process P is not deadlocked if and only if there exists a
sequence of reductions that leave P unblocked

• If a graph is completely reducible, then the system state it
represents is not deadlocked

Operations on Resource Graphs:
Details

1) P requests resources (Add arc)
Precondition:
– P must have no outstanding requests
– P can request any number of resources of any type
Operation:
– Add one edge (P, Rj) for each resource copy Rj requested

2) P acquires resources (Reverse arc)
Precondition:
– Must be available units to grant all requests
– P acquires all requested resources
Operation:
– Reverse all request edges directed from P toward resources

Operations on Resource Graphs:
Details …

3) P releases resources (Delete arc)
Precondition:
– P must have no outstanding requests
– P can release any subset of resources that it holds
Operation:
– Delete one arc directed away from resource for each released

resource

Resource Graphs

P1 R1

P2R2

1) P1 acquires 1 unit of R1
2) P1 releases all resources (finishes)
3) P2 acquires 2 units of R2
4) P2 releases all resources (finishes)

NO… .One sequence of reductions:

DEADLOCKED?

Resource Graphs …

P1 R1

P2R2

DEADLOCKED?

NO… . One sequence of Reductions:

1) P2 acquires 2 units of R2
2) P2 releases all resources (finishes)
3) P1 acquires 2 units of R1
4) P1 releases all resources (finishes)

Resource Graphs…

What if there was only 2
available unit of R2 ?

Can deadlock occur with
multiple copies of just one
resource?

Can deadlock occur
with just one copy of
one resource?

?

Recovering from Deadlock

Once deadlock has been detected, the system
must be restored to a non-deadlocked state

Once deadlock has been detected, the system
must be restored to a non-deadlocked state

1) Kill one or more processes
- Might consider priority, time left, etc. to determine order of

elimination

2) Preempt resources
- Preempted processes must rollback
- Must keep ongoing information about running processes

