
1

Pintos Project #3

Virtual Memory

The following slides were created by Xiaomo
Liu and others for CS 3204 Fall 2007. And
Modified by Nick Ryan for Spring 2009

CS3204: Operating Systems

Spring 2009

Project 3 Help Session

2

Outline

 Virtual memory concept

 Current pintos memory management

 Task
 Lazy load

 Stack growth

 File memory mapping

 Swapping

 Suggestion
 How to start

 Implementation order

3

Virtual Memory Concept

 VM is the logical memory layout
for every process

 It is divided into kernel space
and user space

 Kernel space is global (shared)

 User space is local (individual)

 Different from physical memory

 Map to the physical memory

 How to do it? Paging!

 Divide the VM of a process into
small pieces (pages)– 4KB

 ―Randomly‖ permute their
orders in PM

Code

Data

BSS

Stack

start program

here

Heap

0

MAX_VIRTUAL

user space

kernel space

4

Virtual Memory Mapping

 Page

 4KB in VM

 Frame

 4KB in PM

 One to one
mapping

0

1

3

v

5

Pintos Virtual Memory Management

Executable on Disk

Virtual Linear Address Space
(page)

Physical Memory
(frame)

User executable uses virtual,
space (0-3GB). They
are organized as segments.

PHYS_BASE

0

paddr = kvaddr – PHYS_BASE

Kernel space,
space (3-4GB)

6

Pintos Virtual Memory Mapping

 Virtual address (31–12: page number, 11–0: offset)

 Physical address (31-12: frame number, 11-0: offset)

 Two-level mapping

 Page number finds to the corresponding frame

 Page offset finds to the corresponding byte in the frame

7

Pintos Virtual Memory
Mapping…

Three-level mapping

Find these vaddr.h
and pagedir.h/c for its

interface.

Virtual Memory Mapping

RAM Frames

8

Current Status (Before project 3)

 Support multiprogramming

 Load the entire data, code and stack
segments into memory before
executing a program (see load() in
process.c)

 Fixed size of stack (1 page) to each
process

 A restricted design!

9

Project 3 Requirement

 Lazy load

 Do not load any page initially

 Load one page from executable when necessary

 Stack growth

 Allocate additional page for stack when necessary

 File memory mapping

 Keep one copy of opened file in memory

 Keep track of which memory maps to which file

 Swapping

 If run out of frames, select one using frame

 Swap it out to the swap disk

 Return it as a free frame

10

Step 1: Frame “Table”

 Functionalities

 Keep track all the frames of physical memory used by the user
processes

 Record the statuses of each frame, such as

 Thread it belongs to (if any!)

 Page table entry it corresponds to (if any!)

 … (can be more)

 Implementations (two possible approaches)

 1. Modify current frame allocator ―palloc_get_page(PAL_USER)‖

 2. Implement your own frame allocator on top of
―palloc_get_page(PAL_USER)‖ without modifying it. (Recommended)

 Have a look at ―init.c‖ and ―palloc.c‖ to understand how they work

 Not necessary to use hash table (need figure out by yourself)

 Usage

 Frame table is necessary for physical memory allocation and is used
to select victim when swapping.

11

Step 2: Lazy Loading

 How does pintos load executables?
 Allocate a frame and load a page of executable from file disk

into memory

 Before project 3
 Pintos will initially load all pages of executable into physical

memory

 After project 3
 Load nothing except setup the stack at the beginning
 When executing the process, a page fault occurs and the page

fault handler checks where the expected page is: in executable
file (i.e. hasn‘t loaded yet)? in swap disk (i.e. swapped out
already)?

 If in executable, you need to load the corresponding page from
executable

 If in swap disk, you need to load the corresponding page from
swap disk

 Page fault handler needs to resume the execution of the
process after loading the page

12

Step 3: Supplemental Page
Table

 Functionalities

 Your ―s-page table‖ must be able to decide where to load
executable and which corresponding page of executable to
load

 Your ―s-page table ‖ must be able to decide how to get swap
disk and which part (in sector) of swap disk stores the
corresponding page

 Implementation
 Use hash table (recommend)

 Usage
 Rewrite load_segment() (in process.c) to populate s-page

table without loading pages into memory
 Page fault handler then loads pages after consulting s-page

table

13

Step 4: Stack Growth
 Functionalities

 Before project 3: user stack is fixed with size of 1 page, i.e. 4KB
 After project 3: user stack is allows to allocate additional pages as

necessary

 Implementation

 If the user program exceeds the stack size, a page fault will occur

 Catch the stack pointer, esp, from the interrupt frame

 In page fault handler, you need to determine whether the faulted
address is ―right below‖ the current end of the stack

 Whether page fault is for lazy load or stack growth

 Don‘t consider fault addresses less than esp - 32

 Calculate how many additional pages need to be allocated for stack; or
just allocated faulting page.

 You must impose an absolute limit on stack size, STACK_SIZE

 Consider potential for stack/heap collisions

14

Step 5: File Memory Mapping

 Functionalities
 Make open files accessible via

direct memory access – “map”
them
 Storing data will write to file
 Read data must come from

file

 If file size is not multiple of
PGSIZE—sticks-out, may
cause partial page – handle
this correctly

 Reject mmap when: zero
address or length, overlap, or
console file (tell by fd)

Memory

mapped

15

Step 5: File Memory Mapping…

 Implementations

 Use ―struct file*‖ to keep track of the open files of a
process (get via file_reopen())

 Design two new system calls: mapid_t mmap(fd,
addr) and void munmap(mapid_t)

 Mmap() system call also populates the s-page table

 Design a data structure to keep track of these
mappings (need figure out by yourself)

 We don‘t require that two processes that map the
same file see the same data

 We do require that mmap()‘ed pages are
 Loaded lazily

 Written back only if dirty

 Subject to eviction if physical memory gets scarce

16

Step 6: Swap “table”

 Functionalities

 When out of free frames, evict a page from its frame and
put a copy of into swap disk, if necessary, to get a free
frame — ―swap out‖

 When page fault handler finds a page is not memory but
in swap disk, allocate a new frame and move it to
memory — ―swap in‖

 Implementation

 Need a method to keep track of whether a page has been
swapped and in which part of swap disk a page has been
stored if so

 Not necessary to use hash table (need figure out by
yourself)

 Key insights: (1) only owning process will ever page-in a
page from swap; (2) owning process must free used
swap slots on exit

17

Step 7: Frame Eviction

 Implementations
 The main purpose of maintaining frame table is to

efficiently find a victim frame for swapping
 Choose a suitable page replacement algorithm, i.e. eviction

algorithm, such as second chance algorithm, additional
reference bit algorithm etc. (See 9.4 of textbook)

 Select a frame to swap out from frame table
 Unfortunately, frame table entry doesn’t store access

bits
 Refer frame table entry back to the page table entry (PTE)
 Use accessed/dirty bit in PTE (must use pagedir_* function

here to get hardware bit.)

 Send the frame to swap disk
 Prevent changes to the frame during swapping first

 Update page tables (both s-page table and hardware page
table via pagedir_* functions) as needed

18

Step 8: On Process Termination

 Resource Management
 Destroy your supplemental page table

 Free your frames, freeing the
corresponding entries in the frame table

 Free your swap slots (if any) and delete
the corresponding entries in the swap
table

 Close all files: if a file is mmapped +
dirty, write the dirty mmapped pages
from memory back to the file disk

19

Important Issues

 Synchronization
 Allow parallelism of multiple processes

 Page fault handling from multiple
processes must be possible in parallel

 For example, if process A‘s page fault
needs I/O (swapping or lazy load); and if
process B‘s page fault does not need I/O
(stack growth or all ‗0‘ page), then B
should go ahead without having to wait
for A.

20

Implementation Order
Suggestions

 Pre-study
 Understand memory & virtual memory (Lecture

slides and Ch 8 & 9 of the textbook)
 Understand project specification (including

Appendix A.6, A.7 and A.8)
 Understand the important pieces of source code

(process.c: load_segment(), exception.c:
page_fault())

 Try to pass all the test cases of project 2
 At least, argument passing and system call

framework should work

 Frame table management

21

Implementation Order
Suggestions…

 Supplemental page table management

 Run regression test cases from project 2

 They are already integrated in the P3 test cases

 You kernel with lazy load should pass all the
regression test cases at this point

 Implement stack growth and file memory
mapping in parallel

 Swapping

 Implement the page replacement algorithm

 Implement ―swap out‖ & ―swap in‖ functionality

22

Other Suggestions

 Working the VM directory

 Create your page.h, frame.h, swap.h as well as
page.c, frame.c, swap.c in VM directory

 Add your additional files to the makefile:
Makefile.build

 Keep an eye on the project forum

 Start the design document early

 It counts 50% of your project scores!

 Its questions can enlighten your design!

 Is shared this time (1 per group)

23

End

 Questions?

 Project 3 is due April 14th at 11:59PM

 Good luck!

