
1

Pintos Project #3

Virtual Memory

The following slides were created by Xiaomo
Liu and others for CS 3204 Fall 2007. And
Modified by Nick Ryan for Spring 2009

CS3204: Operating Systems

Spring 2009

Project 3 Help Session

2

Outline

 Virtual memory concept

 Current pintos memory management

 Task
 Lazy load

 Stack growth

 File memory mapping

 Swapping

 Suggestion
 How to start

 Implementation order

3

Virtual Memory Concept

 VM is the logical memory layout
for every process

 It is divided into kernel space
and user space

 Kernel space is global (shared)

 User space is local (individual)

 Different from physical memory

 Map to the physical memory

 How to do it? Paging!

 Divide the VM of a process into
small pieces (pages)– 4KB

 ―Randomly‖ permute their
orders in PM

Code

Data

BSS

Stack

start program

here

Heap

0

MAX_VIRTUAL

user space

kernel space

4

Virtual Memory Mapping

 Page

 4KB in VM

 Frame

 4KB in PM

 One to one
mapping

0

1

3

v

5

Pintos Virtual Memory Management

Executable on Disk

Virtual Linear Address Space
(page)

Physical Memory
(frame)

User executable uses virtual,
space (0-3GB). They
are organized as segments.

PHYS_BASE

0

paddr = kvaddr – PHYS_BASE

Kernel space,
space (3-4GB)

6

Pintos Virtual Memory Mapping

 Virtual address (31–12: page number, 11–0: offset)

 Physical address (31-12: frame number, 11-0: offset)

 Two-level mapping

 Page number finds to the corresponding frame

 Page offset finds to the corresponding byte in the frame

7

Pintos Virtual Memory
Mapping…

Three-level mapping

Find these vaddr.h
and pagedir.h/c for its

interface.

Virtual Memory Mapping

RAM Frames

8

Current Status (Before project 3)

 Support multiprogramming

 Load the entire data, code and stack
segments into memory before
executing a program (see load() in
process.c)

 Fixed size of stack (1 page) to each
process

 A restricted design!

9

Project 3 Requirement

 Lazy load

 Do not load any page initially

 Load one page from executable when necessary

 Stack growth

 Allocate additional page for stack when necessary

 File memory mapping

 Keep one copy of opened file in memory

 Keep track of which memory maps to which file

 Swapping

 If run out of frames, select one using frame

 Swap it out to the swap disk

 Return it as a free frame

10

Step 1: Frame “Table”

 Functionalities

 Keep track all the frames of physical memory used by the user
processes

 Record the statuses of each frame, such as

 Thread it belongs to (if any!)

 Page table entry it corresponds to (if any!)

 … (can be more)

 Implementations (two possible approaches)

 1. Modify current frame allocator ―palloc_get_page(PAL_USER)‖

 2. Implement your own frame allocator on top of
―palloc_get_page(PAL_USER)‖ without modifying it. (Recommended)

 Have a look at ―init.c‖ and ―palloc.c‖ to understand how they work

 Not necessary to use hash table (need figure out by yourself)

 Usage

 Frame table is necessary for physical memory allocation and is used
to select victim when swapping.

11

Step 2: Lazy Loading

 How does pintos load executables?
 Allocate a frame and load a page of executable from file disk

into memory

 Before project 3
 Pintos will initially load all pages of executable into physical

memory

 After project 3
 Load nothing except setup the stack at the beginning
 When executing the process, a page fault occurs and the page

fault handler checks where the expected page is: in executable
file (i.e. hasn‘t loaded yet)? in swap disk (i.e. swapped out
already)?

 If in executable, you need to load the corresponding page from
executable

 If in swap disk, you need to load the corresponding page from
swap disk

 Page fault handler needs to resume the execution of the
process after loading the page

12

Step 3: Supplemental Page
Table

 Functionalities

 Your ―s-page table‖ must be able to decide where to load
executable and which corresponding page of executable to
load

 Your ―s-page table ‖ must be able to decide how to get swap
disk and which part (in sector) of swap disk stores the
corresponding page

 Implementation
 Use hash table (recommend)

 Usage
 Rewrite load_segment() (in process.c) to populate s-page

table without loading pages into memory
 Page fault handler then loads pages after consulting s-page

table

13

Step 4: Stack Growth
 Functionalities

 Before project 3: user stack is fixed with size of 1 page, i.e. 4KB
 After project 3: user stack is allows to allocate additional pages as

necessary

 Implementation

 If the user program exceeds the stack size, a page fault will occur

 Catch the stack pointer, esp, from the interrupt frame

 In page fault handler, you need to determine whether the faulted
address is ―right below‖ the current end of the stack

 Whether page fault is for lazy load or stack growth

 Don‘t consider fault addresses less than esp - 32

 Calculate how many additional pages need to be allocated for stack; or
just allocated faulting page.

 You must impose an absolute limit on stack size, STACK_SIZE

 Consider potential for stack/heap collisions

14

Step 5: File Memory Mapping

 Functionalities
 Make open files accessible via

direct memory access – “map”
them
 Storing data will write to file
 Read data must come from

file

 If file size is not multiple of
PGSIZE—sticks-out, may
cause partial page – handle
this correctly

 Reject mmap when: zero
address or length, overlap, or
console file (tell by fd)

Memory

mapped

15

Step 5: File Memory Mapping…

 Implementations

 Use ―struct file*‖ to keep track of the open files of a
process (get via file_reopen())

 Design two new system calls: mapid_t mmap(fd,
addr) and void munmap(mapid_t)

 Mmap() system call also populates the s-page table

 Design a data structure to keep track of these
mappings (need figure out by yourself)

 We don‘t require that two processes that map the
same file see the same data

 We do require that mmap()‘ed pages are
 Loaded lazily

 Written back only if dirty

 Subject to eviction if physical memory gets scarce

16

Step 6: Swap “table”

 Functionalities

 When out of free frames, evict a page from its frame and
put a copy of into swap disk, if necessary, to get a free
frame — ―swap out‖

 When page fault handler finds a page is not memory but
in swap disk, allocate a new frame and move it to
memory — ―swap in‖

 Implementation

 Need a method to keep track of whether a page has been
swapped and in which part of swap disk a page has been
stored if so

 Not necessary to use hash table (need figure out by
yourself)

 Key insights: (1) only owning process will ever page-in a
page from swap; (2) owning process must free used
swap slots on exit

17

Step 7: Frame Eviction

 Implementations
 The main purpose of maintaining frame table is to

efficiently find a victim frame for swapping
 Choose a suitable page replacement algorithm, i.e. eviction

algorithm, such as second chance algorithm, additional
reference bit algorithm etc. (See 9.4 of textbook)

 Select a frame to swap out from frame table
 Unfortunately, frame table entry doesn’t store access

bits
 Refer frame table entry back to the page table entry (PTE)
 Use accessed/dirty bit in PTE (must use pagedir_* function

here to get hardware bit.)

 Send the frame to swap disk
 Prevent changes to the frame during swapping first

 Update page tables (both s-page table and hardware page
table via pagedir_* functions) as needed

18

Step 8: On Process Termination

 Resource Management
 Destroy your supplemental page table

 Free your frames, freeing the
corresponding entries in the frame table

 Free your swap slots (if any) and delete
the corresponding entries in the swap
table

 Close all files: if a file is mmapped +
dirty, write the dirty mmapped pages
from memory back to the file disk

19

Important Issues

 Synchronization
 Allow parallelism of multiple processes

 Page fault handling from multiple
processes must be possible in parallel

 For example, if process A‘s page fault
needs I/O (swapping or lazy load); and if
process B‘s page fault does not need I/O
(stack growth or all ‗0‘ page), then B
should go ahead without having to wait
for A.

20

Implementation Order
Suggestions

 Pre-study
 Understand memory & virtual memory (Lecture

slides and Ch 8 & 9 of the textbook)
 Understand project specification (including

Appendix A.6, A.7 and A.8)
 Understand the important pieces of source code

(process.c: load_segment(), exception.c:
page_fault())

 Try to pass all the test cases of project 2
 At least, argument passing and system call

framework should work

 Frame table management

21

Implementation Order
Suggestions…

 Supplemental page table management

 Run regression test cases from project 2

 They are already integrated in the P3 test cases

 You kernel with lazy load should pass all the
regression test cases at this point

 Implement stack growth and file memory
mapping in parallel

 Swapping

 Implement the page replacement algorithm

 Implement ―swap out‖ & ―swap in‖ functionality

22

Other Suggestions

 Working the VM directory

 Create your page.h, frame.h, swap.h as well as
page.c, frame.c, swap.c in VM directory

 Add your additional files to the makefile:
Makefile.build

 Keep an eye on the project forum

 Start the design document early

 It counts 50% of your project scores!

 Its questions can enlighten your design!

 Is shared this time (1 per group)

23

End

 Questions?

 Project 3 is due April 14th at 11:59PM

 Good luck!

