
1

CS 3204
Operating Systems

Godmar Back

Lecture 9

9/25/2008CS 3204 Fall 2008 2

Announcements

• Project 1 due on Sep 29, 11:59pm
– Additional GTA office hours

• Nick: Wed 4-6pm
• Peter: TBA

• Midterm coming up Oct 2
• Reading:

– Read carefully 1.5, 3.1-3.3, 6.1-6.4

9/25/2008CS 3204 Fall 2008 3

Project 1 Suggested Timeline

• By now, you have:
– Have read relevant project documentation, set up CVS, built and

run your first kernel, designed your data structures for alarm
clock

• And should be finishing:
– Alarm clock by Sep 16

• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Concurrency & Synchronization

continued

9/25/2008CS 3204 Fall 2008 5

Recap: Disabling IRQs
• Disabling IRQs

– (1) When used as a strategy for achieving mutual
exclusion between threads on a uniprocessor

– Or (2) when used to protect against concurrent access by
IRQ handler

• must not block (e.g., call thread_block())
• must not loop for long/infinitely
• (1) typically implemented not actually as cli, but by postponing

interrupts that could lead to context switches

– Insufficient for multiprocessor
– Traditionally used to avoid losing wakeups on

uniprocessor
• allow interrupts only after thread is prepared to be

woken up

9/25/2008CS 3204 Fall 2008 6

Semaphores
• Invented by Edsger Dijkstra in 1965s
• Counter S, initialized to some value, with two operations:

– P(S) or “down” or “wait” – if counter greater than zero,
decrement. Else wait until greater than zero, then decrement

– V(S) or “up” or “signal” – increment counter, wake up any
threads stuck in P.

• Semaphores don’t go negative:
– #V + InitialValue - #P >= 0

• Note: direct access to counter value after initialization is
not allowed

• Counting vs Binary Semaphores
– Binary: counter can only be 0 or 1

• Simple to implement, yet powerful
– Can be used for many synchronization problems

Source: inter.scoutnet.org



2

Recap: Implementing
Locks/Semaphores

• Both locks and semaphores can be implemented
directly on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

• On multiprocessor, build implementations from
atomic instructions such as compare-and-swap
– Must guard against both accesses by other CPUs and

accesses by threads on own CPU
• Spinning vs. Blocking
• Locks are simpler than semaphores

– Can be implemented when semaphores are present
9/25/2008CS 3204 Fall 2008 7 9/25/2008CS 3204 Fall 2008 8

Implementing Locks:
Practical Issues

• How expensive are locks?
• Two considerations:

– Cost to acquire uncontended lock
• UP Kernel: disable/enable irq + memory access
• In other scenarios: needs atomic instruction (relatively expensive in

terms of processor cycles, especially if executed often)
– Cost to acquire contended lock

• Spinlock: blocks current CPU entirely (if no blocking is employed)
• Regular lock: cost at least two context switches, plus associated

management overhead

• Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily

9/25/2008CS 3204 Fall 2008 9

- Note -

• Examples on following slides assume a slightly
different version of Project 0 (used several
semesters ago) where used blocks were also
kept on a list, called the “used list.”
– mem_alloc would add a block to used list
– mem_free would remove block from used list

• In this case, the code needed to protect both the
free and used lists

• The following slides discuss correct and
incorrect ways of doing so

9/25/2008CS 3204 Fall 2008 10

Using Locks
• Associate each shared variable with lock L

– “lock L protects that variable”
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

9/25/2008CS 3204 Fall 2008 11

How many locks should I use?

• Could use one lock for all shared variables
– Disadvantage: if a thread holding the lock blocks, no

other thread can access any shared variable, even
unrelated ones

– Sometimes used when retrofitting non-threaded code
into threaded framework

– Examples:
• “BKL” Big Kernel Lock in Linux
• fslock in Pintos Project 2

• Ideally, want fine-grained locking
– One lock only protects one (or a small set of)

variables – how to pick that set?

9/25/2008CS 3204 Fall 2008 12

Multiple locks, the wrong way
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide



3

9/25/2008CS 3204 Fall 2008 13

Multiple locks, 2nd try
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

9/25/2008CS 3204 Fall 2008 14

Multiple locks, correct (1)
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

9/25/2008CS 3204 Fall 2008 15

Multiple locks, correct (2)
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used
lists in parallel, but

increased risk of contended locks
critical section efficiency may be low (particularly
for O(1) operations)

9/25/2008CS 3204 Fall 2008 16

Conclusion

• Choosing which lock should protect which
shared variable(s) is not easy – must weigh:
– Whether all variables are always accessed together

(use one lock if so)
– Whether code inside critical section may block (if not,

no throughput gain from fine-grained locking on
uniprocessor)

– Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

• See “Subtle race condition in Java” later this lecture
– Cost of multiple calls to lock/unlock (increasing

parallelism advantages may be offset by those costs)

9/25/2008CS 3204 Fall 2008 17

Rules for Easy Locking
• Every shared variable must be protected by a lock

– Establish this relationship with code comments
• /* protected by … <lock>*/

– Acquire lock before touching (reading or writing) variable
– Release when done, on all paths
– One lock may protect more than one variable, but not too

many
• If in doubt, use fewer locks (may lead to worse efficiency, but

less likely to lead to race conditions or deadlock)
• If manipulating multiple variables, acquire locks

assigned to protecting each
– Acquire locks always in same order (doesn’t matter which

order, but must be same)
– Release in opposite order
– Don’t release any locks before all have been acquired

(two-phase locking)

9/25/2008CS 3204 Fall 2008 18

Locks in Java/C#

• Every object can function as lock – no need to declare &
initialize them!

• synchronized (locked in C#) brackets code in
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

is
transformed

to



4

9/25/2008CS 3204 Fall 2008 19

Subtle Race Condition

• Race condition even though individual accesses to “sb” are
synchronized (protected by a lock)
– But “len” may no longer be equal to “sb.length” in call to getChars()

• This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make

• Found by Flanagan/Freund

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

Not holding lock on ‘sb’ – other
Thread may change its length

9/25/2008CS 3204 Fall 2008 20

Generalization: Atomicity
Constraints

• Previous example shows that locking, by
itself, may not provide desired atomicity

• Information read in critical section A must
not be used in a critical section B

lock();
var x = read_var();
unlock();
….
lock();
use(x);
unlock();

atomic

atomic

atomicity required to
maintain consistency


