
1

CS 3204
Operating Systems

Godmar Back

Lecture 8

9/25/2008CS 3204 Fall 2008 2

Announcements

• Project 1 due on Sep 29, 11:59pm
• Reading:

– Read carefully 1.5, 3.1-3.3, 6.1-6.4

• Dr. Back has no office hours this week

9/25/2008CS 3204 Fall 2008 3

Project 1 Suggested Timeline

• By now, you have:
– Have read relevant project documentation, set up CVS, built and

run your first kernel, designed your data structures for alarm
clock

• And should be finishing:
– Alarm clock by Sep 16

• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Concurrency & Synchronization

Semaphores

9/25/2008CS 3204 Fall 2008 5

Infinite Buffer Problem
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
thread_yield();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

• Trying to implement infinite buffer problem with locks alone leads to a
very inefficient solution (busy waiting!)

• Locks cannot express precedence constraint: A must happen before B.
9/25/2008CS 3204 Fall 2008 6

Infinite Buffer Problem, Take 2
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

• Q: Why does this not work?



2

9/25/2008CS 3204 Fall 2008 7

Infinite Buffer Problem, Take 2
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Problem 1:
Context switch here would cause
Lost Wakeup problem: producer will put item in
buffer, but won’t unblock consumer thread (since
consumer thread isn’t in consumers yet)

Problem 2: consumers is accessed without lock

9/25/2008CS 3204 Fall 2008 8

Infinite Buffer Problem, Take 3
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

• Idea: move consumers.add before lock_release

9/25/2008CS 3204 Fall 2008 9

Infinite Buffer Problem, Take 3
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

• Idea: move consumers.add before lock_release

Context switch here would allow producer to see
a consumer in the queue that is not yet blocked
– thread_unblock() will panic. (Or, if
thread_unblock() were written to ignore attempts
at unblocking threads that aren’t blocked, the
wakeup would still be lost.)

9/25/2008CS 3204 Fall 2008 10

Infinite Buffer Problem, Take 4
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

• Must ensure that releasing
the lock and blocking
happens atomically

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
disable_preemption();
lock_release(buffer);
thread_block(current);
enable_preemption();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

9/25/2008CS 3204 Fall 2008 11

Infinite Buffer Problem, Take 4
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

• Must ensure that releasing
the lock and blocking
happens atomically

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
disable_preemption();
lock_release(buffer);
thread_block(current);
enable_preemption();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Final problem: producer always
wakes up all consumers, even
though at most one will be able to
consume the item produced. This is
known as a thundering herd
problem.

9/25/2008CS 3204 Fall 2008 12

Infinite Buffer Problem, Take 5
producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)
thread_unblock(

consumers.pop()
);

lock_release(buffer);
}

• This is correct, but complicated
and very easy to get wrong
– Want abstraction that does not

require direct block/unblock call

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
disable_preemption();
lock_release(buffer);
thread_block(current);
enable_preemption();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}



3

9/25/2008CS 3204 Fall 2008 13

Low-level vs. High-level
Synchronization

• Low-level synchronization primitives:
– Disabling preemption, (Blocking) Locks, Spinlocks
– implement mutual exclusion

• Implementing precedence constraints directly via
thread_unblock/thread_block is problematic because
– It’s complicated (see last slides)
– It may violate encapsulation from a software engineering

perspective
– You may not have that access at all (unprivileged code!)

• We need well-understood higher-level constructs that
have support for waiting/signaling “built-in”
– Semaphores
– Monitors

9/25/2008CS 3204 Fall 2008 14

Semaphores
• Invented by Edsger Dijkstra in 1965s
• Counter S, initialized to some value, with two operations:

– P(S) or “down” or “wait” – if counter greater than zero,
decrement. Else wait until greater than zero, then decrement

– V(S) or “up” or “signal” – increment counter, wake up any
threads stuck in P.

• Semaphores don’t go negative:
– #V + InitialValue - #P >= 0

• Note: direct access to counter value after initialization is
not allowed

• Counting vs Binary Semaphores
– Binary: counter can only be 0 or 1

• Simple to implement, yet powerful
– Can be used for many synchronization problems

Source: inter.scoutnet.org

9/25/2008CS 3204 Fall 2008 15

Infinite Buffer w/ Semaphores (1)
semaphore items_avail(0);

producer()
{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);
sema_up(items_avail);

}

consumer()
{

sema_down(items_avail);
lock_acquire(buffer);
item = buffer[tail++];
lock_release(buffer);
return item;

}

• Semaphore “remembers” items put into
queue (no updates are lost)

9/25/2008CS 3204 Fall 2008 16

Infinite Buffer w/ Semaphores (2)
semaphore items_avail(0);
semaphore buffer_access(1);

producer()
{
sema_down(buffer_access);
buffer[head++] = item;
sema_up(buffer_access);
sema_up(items_avail);

}

consumer()
{

sema_down(items_avail);
sema_down(buffer_access);
item = buffer[tail++];
sema_up(buffer_access);
return item;

}

• Can use semaphore instead of lock to
protect buffer access

9/25/2008CS 3204 Fall 2008 17

Bounded Buffer w/ Semaphores
semaphore items_avail(0);
semaphore buffer_access(1);
semaphore slots_avail(CAPACITY);
producer()
{
sema_down(slots_avail);
sema_down(buffer_access);
buffer[head++] = item;
sema_up(buffer_access);
sema_up(items_avail);

}

consumer()
{

sema_down(items_avail);
sema_down(buffer_access);
item = buffer[tail++];
sema_up(buffer_access);
sema_up(slots_avail);
return item;

}

• Semaphores allow for scheduling of
resources

9/25/2008CS 3204 Fall 2008 18

Rendezvous

• A needs to be sure B has advanced to
point L, B needs to be sure A has
advanced to L

semaphore A_madeit(0);

A_rendezvous_with_B()
{
sema_up(A_madeit);
sema_down(B_madeit);

}

semaphore B_madeit(0);

B_rendezvous_with_A()
{
sema_up(B_madeit);
sema_down(A_madeit);

}



4

9/25/2008CS 3204 Fall 2008 19

Waiting for an activity to finish

• Works no matter which thread is scheduled first after thread_create
(parent or child)

• Elegant solution that avoids the need to share a “have done task”
flag between parent & child

• Two applications of this technique in Pintos Project 2
– signal successful process startup (“exec”) to parent
– signal process completion (“exit”) to parent

semaphore done_with_task(0);
thread_create(

do_task,
(void*)&done_with_task);

sema_down(done_with_task);
// safely access task’s results

void
do_task(void *arg)
{

semaphore *s = arg;
/* do the task */
sema_up(*s);

}

9/25/2008CS 3204 Fall 2008 20

Dining Philosophers (Dijkstra)
• A classic
• 5 Philosophers, 1 bowl of

spaghetti
• Philosophers (threads)

think & eat ad infinitum
– Need left & right fork to eat

(!?)
• Want solution that

prevents starvation &
does not delay hungry
philosophers
unnecessarily P3

P1

P0

P2

P4

S4

S3

S2

S0

S1

9/25/2008CS 3204 Fall 2008 21

Dining Philosophers (1)

• What is the problem with this solution?
• Deadlock if all pick up left fork

semaphore fork[0..4](1);
philosopher(int i) // i is 0..4
{
while (true) {

/* think … finally */
sema_down(fork[i]); // get left fork
sema_down(fork[(i+1)%5]); // get right fork
/* eat */
sema_up(fork[i]); // put down left fork
sema_up(fork[(i+1)%5]); // put down right fork

}
}

9/25/2008CS 3204 Fall 2008 22

Dining Philosophers (2)
semaphore fork[0..4](1);
semaphore at_table(4); // allow at most 4 to fight for forks
philosopher(int i) // i is 0..4
{
while (true) {

/* think … finally */
sema_down(at_table); // sit down at table
sema_down(fork[i]); // get left fork
sema_down(fork[(i+1)%5]); // get right fork
/* eat … finally */
sema_up(fork[i]); // put down left fork
sema_up(fork[(i+1)%5]); // put down right fork
sema_up(at_table); // get up

}
}


