
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 6

Announcements
• Project 1 due on Sep 29, 11:59pm
• Help session slides online
• Out of town next week

– No office hours
L t ill b h ld

9/11/2008CS 3204 Fall 2008 2

• Lectures will be held:
– Tuesday: Dr. Butt
– Thursday: Dr. Tilevich

• These are not optional “guest lectures”, they
continue with the class material relevant to
project and midterm

Project 1 Suggested Timeline
• End of this week:

– Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm
clock

• Alarm clock by Sep 16
P ll b i i it t t b S 18

9/11/2008CS 3204 Fall 2008 3

• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Processes & Threads (Summary)

• Had looked at APIs with which to create
processes/threads

• Spawning vs. cloning
“f k/j i ” di (ill b i l t d

9/11/2008CS 3204 Fall 2008 4

• “fork/join” paradigm (will be implemented
in Project 2)

• Various embeddings of threading APIs in
languages (C/POSIX threads, Java, C#)

Using thread_yield() to implement
preemption

• Current thread (“RUNNING”) is moved to
READY state, added to READY list.

• Then scheduler is invoked. Picks a new
READY thread from READY list.

• Case a): there’s only 1 READY thread.
Thread is rescheduled right away

• Case b): there are other READY thread(s)
b 1) another thread has higher priority it is

RUNNING

Process

Scheduler
picks
process

9/11/2008CS 3204 Fall 2008 5

– b.1) another thread has higher priority – it is
scheduled

– b.2) another thread has same priority – it is
scheduled provided the previously running
thread was inserted in tail of ready list.

• “thread_yield()” is a call you can use
whenever you identify a need to preempt
current thread.

• Exception: inside an interrupt handler, use
“intr_yield_on_return()” instead

READYBLOCKED

must wait
for event

Event
arrived

Process
preempted

Type-safe arithmetic types in C
typedef struct
{
double re;
double im;

} complex_t;

static inline complex_t
complex add(complex t x, complex t y)

static inline double
complex_real(complex_t x)
{
return x.re;

}

static inline double
complex imaginary(complex t x)

9/11/2008CS 3204 Fall 2008 6

p _ (p _ , p _ y)
{
return (complex_t){ x.re + y.re, x.im + y.im };

}

p _ g y(p _)
{
return x.im;

}

static inline double
complex_abs(complex_t x)
{
return sqrt(x.re * x.re + x.im * x.im);

}

Pitfall: typedef int fixed_point_t;
fixed_point_t x;
int y;
x = y; // no compile error

2

Concurrency & Synchronization

Overview
• Will talk about locks, semaphores, and

monitors/condition variables
• For each, will talk about:

– What abstraction they represent
– How to implement them

9/11/2008CS 3204 Fall 2008 8

p
– How and when to use them

• Two major issues:
– Mutual exclusion
– Scheduling constraints

• Project note: Pintos implements its locks on top
of semaphores

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void * l t %

9/11/2008CS 3204 Fall 2008 9

static void
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

movl counter, %eax
incl %eax
movl %eax, counter

A Race Condition

Thread 1
movl counter, %eax

Thread 2

movl counter,%eax
incl %eax

IRQ
OS decides to
context switch

tim
e

0
0

9/11/2008CS 3204 Fall 2008 10

incl %eax
movl %eax, counter

incl %eax

movl %eax,counter
%eax – Thread 1’s copy
%eax – Thread 2’s copy
counter – global variable, shared

IRQ

IRQ

0

1
1

1

1
Final result: counter is 1, should be 2
Assume counter == 0 initially

Race Conditions
• Definition: two or more threads read and write a shared

variable, and final result depends on the order of the
execution of those threads

• Usually timing-dependent and intermittent
– Hard to debug

• Not a race condition if all execution orderings lead to

9/11/2008CS 3204 Fall 2008 11

Not a race condition if all execution orderings lead to
same result
– Chances are high that you misjudge this

• How to deal with race conditions:
– Ignore (!?)

• Can be ok if final result does not need to be accurate
• Never an option in CS 3204

– Don’t share: duplicate or partition state
– Avoid “bad interleavings” that can lead to wrong result

Not Sharing: Duplication or
Partitioning

• Undisputedly best way to avoid race conditions
– Always consider it first
– Usually faster than alternative of sharing + protecting
– But duplicating has space cost; partitioning can have

management cost
– Sometimes must share (B depends on A’s result)

9/11/2008CS 3204 Fall 2008 12

• Examples:
– Each thread has its own counter (then sum counters up after

join())
– Every CPU has its own ready queue
– Each thread has its own memory region from which to allocate

objects
• Truly ingenious solutions to concurrency involve a way to

partition things people originally thought you couldn’t

3

Aside: Thread-Local Storage
• A concept that helps to avoid race conditions by giving

each thread a copy of a certain piece of state
• Recall:

– All local variables are already thread-local
• But their extent is only one function invocation

– All function arguments are also thread-local
• But must pass them along call-chain

TLS t i bl f hi h th ’ t l

9/11/2008CS 3204 Fall 2008 13

• TLS creates variables of which there’s a separate value
for each thread.

• In PThreads/C (compiler or library-supported)
– Dynamic: pthread_create_key(), pthread_get_key(),

pthread_set_key()
• E.g. myvalue = keytable(key_a)→get(pthread_self());

– Static: using __thread storage class
• E.g.: __thread int x;

• Java: java.lang.ThreadLocal
In Pintos:
Add member to struct thread

Race Condition & Execution Order

• Prevent race conditions by imposing
constraints on execution order so the final
result is the same regardless of actual
execution order

9/11/2008CS 3204 Fall 2008 14

– That is, exclude “bad” interleavings
– Specifically: disallow other threads to start

updating shared variables while one thread is
in the middle of doing so; make those updates
atomic – threads either see old or new value,
but none in between

Atomicity & Critical Sections
• Atomic: indivisible

– Certain machine instructions are atomic
– But need to create larger atomic sections

• Critical Section

9/11/2008CS 3204 Fall 2008 15

– A synchronization technique to ensure atomic
execution of a segment of code

• Requires entry() and exit() operations

pthread_mutex_lock(&lock); /* entry() */
counter++;
pthread_mutex_unlock(&lock); /* exit() */

Critical Sections (cont’d)
• Critical Section Problem also known as mutual exclusion

problem
• Only one thread can be inside critical section; others

attempting to enter CS must wait until thread that’s
inside CS leaves it.

• Note: a critical section does not necessarily imply that

9/11/2008CS 3204 Fall 2008 16

Note: a critical section does not necessarily imply that
thread executes section without interruption (i.e.,
preemption), or even that thread completes section – just
that other threads can’t enter this critical section while
one thread is inside it/hasn’t left it

• Solutions can be entirely software, or entirely hardware
– Usually combined
– Different solutions for uniprocessor vs multiprocessor scenarios

Implementing Critical Sections

• Will look at:
– Disabling interrupts approach
– Semaphores

Locks

9/11/2008CS 3204 Fall 2008 17

– Locks

Disabling Interrupts

• All asynchronous
context switches start
with interrupts
– So disable interrupts

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

void intr_set_level(intr_level to)
{

9/11/2008CS 3204 Fall 2008 18

to avoid them! {
if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

4

Implementing CS by avoiding
context switches: Variation (1)

• Variation of
“disabling-interrupts”
technique
– That doesn’t actually

disable interrupts

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

i t t ()

9/11/2008CS 3204 Fall 2008 19

disable interrupts
– If IRQ happens, ignore

it
• Assumes writes to

“taking_interrupts” are
atomic and sequential
wrt reads

intr_entry()
{

if (!taking_interrupts)
iret

intr_handle();
}

Implementing CS by avoiding
context switches: Variation (2)

• Code on previous slide
could lose interrupts
– Remember pending

interrupts and check when
leaving critical section

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;

9/11/2008CS 3204 Fall 2008 20

• This technique can be
used with Unix signal
handlers (which are like
“interrupts” sent to a Unix
process)
– but tricky to get right

intr_entry()
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}

Avoiding context switches:
Variation (3)

• Instead of setting flag,
have irq handler
examine PC where
thread was

critical_section_start:
/* modify shared data */

critical_section_end:

intr entry()

9/11/2008CS 3204 Fall 2008 21

interrupted
• See Bershad ’92:

Fast Mutual Exclusion
on Uniprocessors

intr_entry()
{

if (PC in (critical_section_start,
critical_end_end)) {

iret
}
intr_handle();

}

Disabling Interrupts: Summary
• (this applies to all variations)
• Sledgehammer solution
• Infinite loop means machine locks up
• Use this to protect data structures from concurrent

access by interrupt handlers

9/11/2008CS 3204 Fall 2008 22

access by interrupt handlers
– Keep sections of code where irqs are disabled minimal (nothing

else can happen until irqs are reenabled – latency penalty!)
– If you block (give up CPU) mutual exclusion with other threads is

not guaranteed
• Any function that transitively calls thread_block() may block

• Want something more fine-grained
– Key insight: don’t exclude everybody else, only those contending

for the same critical section

Critical Section Problem
• A solution for the CS Problem must

1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)

• if more than one threads attempt to enter, one will succeed
• ability to enter should not depend on activity of other threads not

currently in CS

9/11/2008CS 3204 Fall 2008 23

currently in CS
3) Bounded Waiting: (no starvation)

• A thread attempting to enter critical section eventually will
(assuming no thread spends unbounded amount of time inside
CS)

• A solution for CS problem should be
– Fair (make sure waiting times are balanced)
– Efficient (not waste resources)
– Simple

