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CS 3204
Operating Systemsp g y

Godmar Back

Lecture 6

Announcements
• Project 1 due on Sep 29, 11:59pm
• Help session slides online
• Out of town next week

– No office hours
L t ill b h ld
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• Lectures will be held:
– Tuesday: Dr. Butt
– Thursday: Dr. Tilevich

• These are not optional “guest lectures”, they 
continue with the class material relevant to 
project and midterm

Project 1 Suggested Timeline
• End of this week:

– Have read relevant project documentation, set up CVS, built and 
run your first kernel, designed your data structures for alarm 
clock

• Alarm clock by Sep 16
P ll b i i it t t b S 18
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• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the 

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Processes & Threads (Summary)

• Had looked at APIs with which to create 
processes/threads

• Spawning vs. cloning
“f k/j i ” di ( ill b i l t d
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• “fork/join” paradigm (will be implemented 
in Project 2)

• Various embeddings of threading APIs in 
languages (C/POSIX threads, Java, C#)

Using thread_yield() to implement 
preemption

• Current thread (“RUNNING”) is moved to 
READY state, added to READY list.

• Then scheduler is invoked. Picks a new 
READY thread from READY list.

• Case a): there’s only 1 READY thread. 
Thread is rescheduled right away

• Case b): there are other READY thread(s)
b 1) another thread has higher priority it is

RUNNING

Process

Scheduler
picks 
process
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– b.1) another thread has higher priority – it is 
scheduled

– b.2) another thread has same priority – it is 
scheduled provided the previously running 
thread was inserted in tail of ready list.

• “thread_yield()” is a call you can use 
whenever you identify a need to preempt 
current thread.

• Exception: inside an interrupt handler, use 
“intr_yield_on_return()” instead

READYBLOCKED

must wait
for event

Event 
arrived

Process
preempted

Type-safe arithmetic types in C
typedef struct
{
double      re;
double      im;

} complex_t;

static inline complex_t
complex add(complex t x, complex t y)

static inline double
complex_real(complex_t x)
{
return x.re;

}

static inline double
complex imaginary(complex t x)
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p _ ( p _ , p _ y)
{
return (complex_t){ x.re + y.re, x.im + y.im };

}

p _ g y( p _ )
{
return x.im;

}

static inline double
complex_abs(complex_t x)
{
return sqrt(x.re * x.re + x.im * x.im);

}

Pitfall: typedef int fixed_point_t;
fixed_point_t x;
int y;
x = y; // no compile error
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Concurrency & Synchronization

Overview
• Will talk about locks, semaphores, and 

monitors/condition variables
• For each, will talk about:

– What abstraction they represent
– How to implement them
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p
– How and when to use them

• Two major issues:
– Mutual exclusion
– Scheduling constraints

• Project note: Pintos implements its locks on top 
of semaphores

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void * l t %
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static void 
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

movl    counter, %eax
incl      %eax
movl    %eax, counter

A Race Condition

Thread 1
movl counter, %eax

Thread 2

movl counter,%eax
incl %eax

IRQ 
OS decides to
context switch

tim
e

0
0

9/11/2008CS 3204 Fall 2008 10

incl   %eax
movl %eax, counter

incl   %eax

movl %eax,counter
%eax – Thread 1’s copy
%eax – Thread 2’s copy
counter – global variable, shared

IRQ 

IRQ 

0

1
1

1

1
Final result: counter is 1, should be 2
Assume counter == 0 initially

Race Conditions
• Definition: two or more threads read and write a shared 

variable, and final result depends on the order of the 
execution of those threads

• Usually timing-dependent and intermittent
– Hard to debug

• Not a race condition if all execution orderings lead to
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Not a race condition if all execution orderings lead to 
same result
– Chances are high that you misjudge this

• How to deal with race conditions:
– Ignore (!?)

• Can be ok if final result does not need to be accurate 
• Never an option in CS 3204

– Don’t share: duplicate or partition state
– Avoid “bad interleavings” that can lead to wrong result

Not Sharing: Duplication or 
Partitioning

• Undisputedly best way to avoid race conditions
– Always consider it first
– Usually faster than alternative of sharing + protecting
– But duplicating has space cost; partitioning can have 

management cost
– Sometimes must share (B depends on A’s result)
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• Examples:
– Each thread has its own counter (then sum counters up after 

join())
– Every CPU has its own ready queue
– Each thread has its own memory region from which to allocate 

objects
• Truly ingenious solutions to concurrency involve a way to 

partition things people originally thought you couldn’t
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Aside: Thread-Local Storage
• A concept that helps to avoid race conditions by giving 

each thread a copy of a certain piece of state
• Recall:

– All local variables are already thread-local
• But their extent is only one function invocation

– All function arguments are also thread-local
• But must pass them along call-chain

TLS t i bl f hi h th ’ t l
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• TLS creates variables of which there’s a separate value 
for each thread.

• In PThreads/C (compiler or library-supported)
– Dynamic: pthread_create_key(), pthread_get_key(), 

pthread_set_key()
• E.g. myvalue = keytable(key_a)→get(pthread_self());

– Static: using __thread storage class
• E.g.: __thread int x;

• Java: java.lang.ThreadLocal
In Pintos:
Add member to struct thread

Race Condition & Execution Order

• Prevent race conditions by imposing 
constraints on execution order so the final 
result is the same regardless of actual 
execution order
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– That is, exclude “bad” interleavings
– Specifically: disallow other threads to start 

updating shared variables while one thread is 
in the middle of doing so; make those updates 
atomic – threads either see old or new value, 
but none in between

Atomicity & Critical Sections
• Atomic: indivisible

– Certain machine instructions are atomic
– But need to create larger atomic sections

• Critical Section
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– A synchronization technique to ensure atomic 
execution of a segment of code

• Requires entry() and exit() operations

pthread_mutex_lock(&lock);      /* entry() */
counter++;
pthread_mutex_unlock(&lock);  /* exit() */

Critical Sections (cont’d)
• Critical Section Problem also known as mutual exclusion 

problem
• Only one thread can be inside critical section; others 

attempting to enter CS must wait until thread that’s 
inside CS leaves it.

• Note: a critical section does not necessarily imply that
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Note: a critical section does not necessarily imply that 
thread executes section without interruption (i.e., 
preemption), or even that thread completes section – just 
that other threads can’t enter this critical section while 
one thread is inside it/hasn’t left it

• Solutions can be entirely software, or entirely hardware
– Usually combined
– Different solutions for uniprocessor vs multiprocessor scenarios

Implementing Critical Sections

• Will look at:
– Disabling interrupts approach
– Semaphores

Locks
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– Locks

Disabling Interrupts

• All asynchronous 
context switches start 
with interrupts
– So disable interrupts 

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

void intr_set_level(intr_level to) 
{
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to avoid them! {
if (to == INTR_ON)
intr_enable();

else
intr_disable();

}
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Implementing CS by avoiding 
context switches: Variation (1)

• Variation of 
“disabling-interrupts” 
technique
– That doesn’t actually 

disable interrupts

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

i t t ()
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disable interrupts
– If IRQ happens, ignore 

it
• Assumes writes to 

“taking_interrupts” are 
atomic and sequential 
wrt reads

intr_entry() 
{

if (!taking_interrupts)
iret

intr_handle();
}   

Implementing CS by avoiding 
context switches: Variation (2)

• Code on previous slide 
could lose interrupts
– Remember pending 

interrupts and check when 
leaving critical section

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;
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• This technique can be 
used with Unix signal 
handlers (which are like 
“interrupts” sent to a Unix 
process)
– but tricky to get right

intr_entry() 
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}   

Avoiding context switches: 
Variation (3)

• Instead of setting flag, 
have irq handler 
examine PC where 
thread was 

critical_section_start:
/* modify shared data */

critical_section_end:

intr entry()
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interrupted
• See Bershad ’92: 

Fast Mutual Exclusion 
on Uniprocessors

intr_entry() 
{

if (PC in (critical_section_start, 
critical_end_end)) {

iret
}
intr_handle();

}   

Disabling Interrupts: Summary
• (this applies to all variations)
• Sledgehammer solution
• Infinite loop means machine locks up
• Use this to protect data structures from concurrent 

access by interrupt handlers
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access by interrupt handlers
– Keep sections of code where irqs are disabled minimal (nothing 

else can happen until irqs are reenabled – latency penalty!)
– If you block (give up CPU) mutual exclusion with other threads is 

not guaranteed
• Any function that transitively calls thread_block() may block

• Want something more fine-grained
– Key insight: don’t exclude everybody else, only those contending 

for the same critical section

Critical Section Problem
• A solution for the CS Problem must

1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)

• if more than one threads attempt to enter, one will succeed
• ability to enter should not depend on activity of other threads not 

currently in CS
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currently in CS
3) Bounded Waiting: (no starvation)

• A thread attempting to enter critical section eventually will 
(assuming no thread spends unbounded amount of time inside 
CS)

• A solution for CS problem should be
– Fair (make sure waiting times are balanced)
– Efficient (not waste resources)
– Simple


