
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 5

Announcements

• Group membership due tomorrow (Sep
10), 11:59pm

• Project 1 help session tonight, 6pm-8pm,
Rand 211

9/9/2008CS 3204 Fall 2008 2

Rand 211
– Project 1 due on Sep 29, 11:59pm

• Assigned reading on lectures page
• Please follow submission instructions
• New UTA: Nick Ryan (10h/week)

Processes & Threads

(continued)

Overview

• Have discussed:
– User vs Kernel Mode
– Context Switching

P St t

9/9/2008CS 3204 Fall 2008 4

• Process States
• Priority Scheduling
• Process/Thread API Examples

– Fork/join model

Process States

RUNNING

Process
must wait
for event

Scheduler
picks process

Process
preempted

9/9/2008CS 3204 Fall 2008 5

• Only 1 process (per CPU) can be in RUNNING state

READYBLOCKED

Event arrived

preempted

Process Events

• What’s an event?
– External event:

• disk controller completes sector transfer to memory
• network controller signals that new packet has been received

clock has advanced to a predetermined time

9/9/2008CS 3204 Fall 2008 6

• clock has advanced to a predetermined time

– Events that arise from process interaction:
• a resource that was previously held by some process is now

available (e.g., lock_release)
• an explicit signal is sent to a process (e.g., cond_signal)
• a process has exited or was killed
• a new process has been created

2

Process Lists
• All ready processes are inserted in a “ready list”

data structure
– Running process typically not kept on ready list
– Can implement as multiple (real) ready lists, e.g., one

for each priority class

9/9/2008CS 3204 Fall 2008 7

for each priority class
• All blocked processes are kept on lists

– List usually associated with event that caused
blocking – usually one list per object that’s causing
events

• Most of scheduling involves simple and clever
ways of manipulating lists

Priority Based Scheduling
MAX

er
 P

rio
rit

y 6

Only threads with the highest priority run
If more than one, round-robin

9/9/2008CS 3204 Fall 2008 8

• Done in Linux (pre 2.6.23), Windows, Pintos
(after you complete Project 1), …

MIN

H
ig

he

2
3

Priority Based Scheduling (2)
• Advantage:

– Dead simple: the highest-priority process runs
– Q.: what is the complexity of finding which process that is?

• Disadvantage:
– Not fair: lower-priority processes will never run

9/9/2008CS 3204 Fall 2008 9

Not fair: lower priority processes will never run
– Hence, must adjust priorities somehow

• Many schedulers used in today’s general purpose
and embedded OS work like this
– Only difference is how/whether priorities are adjusted to

provide fairness and avoid starvation
– Exception: Linux “completely-fair scheduler” uses different

scheme, will discuss that later in semester

Using thread_yield() to implement
preemption

• Current thread (“RUNNING”) is moved to
READY state, added to READY list.

• Then scheduler is invoked. Picks a new
READY thread from READY list.

• Case a): there’s only 1 READY thread.
Thread is rescheduled right away

• Case b): there are other READY thread(s)
b 1) another thread has higher priority it is

RUNNING

Process

Scheduler
picks
process

9/9/2008CS 3204 Fall 2007 10

– b.1) another thread has higher priority – it is
scheduled

– b.2) another thread has same priority – it is
scheduled provided the previously running
thread was inserted in tail of ready list.

• “thread_yield()” is a call you can use
whenever you identify a need to preempt
current thread.

• Exception: inside an interrupt handler, use
“intr_yield_on_return()” instead

READYBLOCKED

must wait
for event

Event
arrived

Process
preempted

Reasons for Preemption

• Generally two: quantum expired or change
in priorities

• Reason #1:
– A process of higher importance than the one

9/9/2008CS 3204 Fall 2007 11

A process of higher importance than the one
that’s currently running has just become ready

• Reason #2:
– Time Slice (or Quantum) expired

• Question: what’s good about long vs. short
time slices?

I/O Bound vs CPU Bound Procs

• Processes that usually exhaust their
quanta are said to be CPU bound

• Processes that frequently block for I/O are
said to be I/O bound

9/9/2008CS 3204 Fall 2007 12

said to be I/O bound
• Q.: what are examples of each?

• What policy should a scheduler use to
juggle the needs of both?

3

Process States w/ Suspend

9/9/2008CS 3204 Fall 2007 13

• Can be useful sometimes to suspend processes
– By user request: ^Z in Linux shell/job control
– By OS decision: swapping out entire processes

(Solaris & Windows do that, Linux doesn’t)

Windows XP
• Thread state diagram

in a industrial kernel

9/9/2008CS 3204 Fall 2007 14

• Source: Dave
Probert, Windows
Internals – Copyright
Microsoft 2003

Windows XP
• Priority scheduler

uses 32 priorities
• Scheduling class

determines range in
which priority are

9/9/2008CS 3204 Fall 2007 15

adjusted
• Source: Microsoft®

Windows® Internals,
Fourth Edition:
Microsoft Windows
Server™

Process Creation

• Two common paradigms:
– Cloning vs. spawning

• Cloning: (Unix)
– “fork()” clones current process

9/9/2008CS 3204 Fall 2007 16

() p
– child process then loads new program

• Spawning: (Windows, Pintos)
– “exec()” spawns a new process with new program

• Difference is whether creation of new process
also involves a change in program

fork()
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int ac, char *av[])
{

pid_t child = fork();
if (child < 0)

perror(“fork”), exit(-1);
if (child != 0) {

printf ("I'm the parent %d, my child is %d\n",

9/9/2008CS 3204 Fall 2007 17

p (p y
getpid(), child);

wait(NULL); /* wait for child (“join”) */
} else {

printf ("I'm the child %d, my parent is %d\n",
getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);
}

}

Fork/Exec Model
• Fork():

– Clone most state of parent, including memory
– Inherit some state, e.g. file descriptors
– Important optimization: copy-on-write

• Some state is copied lazily
Keeps program changes process

9/9/2008CS 3204 Fall 2007 18

– Keeps program, changes process
• Exec():

– Overlays current process with new executable
– Keeps process, changes program

• Advantage: simple, clean
• Disadvantage: does not optimize common case (fork

followed by exec of child)

4

The fork()/join() paradigm
• After fork(), parent & child

execute in parallel
• Purpose:

– Launch activity that can be done in
parallel & wait for its completion
O i l l h th

Parent:
fork()

Parent Child
process

9/9/2008CS 3204 Fall 2007 19

– Or simply: launch another program
and wait for its completion (shell
does that)

• Pintos:
– Kernel threads: thread_create (no

thread_join)
– exec(), you’ll do wait() in Project 2

Parent:
join()

process
executes

process
executes

Child
process

exits

OS notifies

CreateProcess()
// Win32
BOOL CreateProcess(

LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD d C ti Fl

9/9/2008CS 3204 Fall 2007 20

DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation);

• See also system(3) on Unix systems
• Pintos exec() is CreateProcess(), not like Unix’s exec()

Thread Creation APIs
• How are threads embedded in a language?
• POSIX Threads Standard (in C)

– pthread_create(), pthread_join()
– Uses function pointer

• Java/C#

9/9/2008CS 3204 Fall 2007 21

Java/C#
– Thread.start(), Thread.join()
– Java: Using “Runnable” instance
– C#: Uses “ThreadStart” delegate

• C++
– No standard has emerged as of yet
– see ISO C++ Strategic Plan for Multithreading

Example pthread_create/join
static void * test_single(void *arg)
{

// this function is executed by each thread, in parallel
}

/* Test the memory allocator with NTHREADS concurrent threads. */
pthread_t threads[NTHREADS];

Use Default Attributes –
could set stack addr/size

here

9/9/2008CS 3204 Fall 2007 22

int i;
for (i = 0; i < NTHREADS; i++)
if (pthread_create(threads + i, (const pthread_attr_t*)NULL,

test_single, (void*)i) == -1)
{ printf("error creating pthread\n"); exit(-1); }

/* Wait for threads to finish. */
for (i = 0; i < NTHREADS; i++)
pthread_join(threads[i], NULL);

here

2nd arg could receive exit
status of thread

Java Threads Example
public class JavaThreads {

public static void main(String []av) throws Exception {
Thread [] t = new Thread[5];
for (int i = 0; i < t.length; i++) {

final int tnum = i;
Runnable runnable = new Runnable() {

public void run() {
System.out.println("Thread #"+tnum);Threads implements Runnable –

9/9/2008CS 3204 Fall 2007 23

}
};
t[i] = new Thread(runnable);
t[i].start();

}
for (int i = 0; i < t.length; i++)

t[i].join();
System.out.println("all done");

}
}

could have subclassed Thread &
overridden run()

Thread.join() can throw
InterruptedException – can be

used to interrupt thread waiting to
join via Thread.interrupt

Why is taking C++ so long?
• Java didn’t – and got it wrong.

– Took years to fix
• What’s the problem?

– Compiler must know about concurrency to not reorder
operations past implicit synchronization points
S l Pi t R f G id A 3 5 M B i

9/9/2008CS 3204 Fall 2007 24

– See also Pintos Reference Guide A.3.5 Memory Barriers
– See Boehm [PLDI 2005]: Threads cannot be implemented as a

library

lock (&l);
flag = true;
unlock (&l);

lock (&l);
unlock (&l);
flag = true;

