
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 4

Announcements

• Project 0 due on Sep 7, 11:59pm
• Start forming groups

– 3 students per group
(b t *d t* ll b t P j t 0)

9/4/2008CS 3204 Fall 2008 2

– (but *do not* collaborate on Project 0)
• Project 1 Help Session

– Tuesday Sep 9, 6-8pm
– Location: Rand 211

Project 0
• Implement User-level Memory Allocator

– Use address-ordered first-fit

9/4/2008CS 3204 Fall 2008 3

used blockfree blockfree list

start enduser object user object

Processes & Threads

Implementing Processes

• To maintain illusion, must remember a process’s
information when not currently running

• Process Control Block (PCB)
– Identifier (*)

9/4/2008CS 3204 Fall 2008 5

()
– Value of registers, including stack pointer (*)
– Information needed by scheduler: process state

(whether blocked or not) (*)
– Resources held by process: file descriptors, memory

pages, etc.
(*) applies to TCB (thread control block) as well

PCB vs TCB

• In 1:1 systems (Pintos), TCB==PCB
– struct thread

– add information there as projects progress
I 1 t struct thread

9/4/2008CS 3204 Fall 2008 6

• In 1:n systems:
– TCB contains execution state of thread +

scheduling information + link to PCB for
process to which thread belongs

– PCB contains identifier, plus information
about resources shared by all threads

{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem elem; /* List element. */
/* others you’ll add as needed. */

};

2

Steps in context switch: high-level

• Save the current process’s execution state
to its PCB

• Update current’s PCB as needed
Ch t N

9/4/2008CS 3204 Fall 2008 7

• Choose next process N
• Update N’s PCB as needed
• Restore N’s PCB execution state

– May involve reprogramming MMU

Execution State

• Saving/restoring execution state is highly tricky:
– Must save state without destroying it

• Registers
– On x86: eax, ebx, ecx, …

9/4/2008CS 3204 Fall 2008 8

, , ,
• Stack

– Special area in memory that holds activation records:
e.g., the local (automatic) variables of all function
calls currently in progress

– Saving the stack means retaining that area & saving a
pointer to it (“stack pointer” = esp)

The Stack, seen from C/C++
int a;
static int b;
int c = 5;
struct S
{

void func(int d)
{
static int e;
int f;
struct S w;

9/4/2008CS 3204 Fall 2008 9

• Q.: which of these variables are stored on
the stack, and which are not?

{
int t;

} s;

st uct S ;
int *g = new int[10];

}

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

Switching Procedures

• Inside kernel, context switch is implemented in
some procedure (function) called from C code
– Appears to caller as a procedure call

• Must understand how to switch procedures

9/4/2008CS 3204 Fall 2008 10

p
(call/return)

• Procedure calling conventions
– Architecture-specific
– Defined by ABI (application binary interface),

implemented by compiler
– Pintos uses SVR4 ABI

x86 Calling Conventions
• Caller saves caller-saved

registers as needed
• Caller pushes arguments,

right-to-left on stack via push
assembly instruction

• Caller executes CALL

• Callee executes:
– Saves callee-saved

registers if they’ll be

9/4/2008CS 3204 Fall 2008 11

instruction: save address of
next instruction & jump to
callee

• Caller resumes: pop
arguments off the stack

• Caller restores caller-saved
registers, if any

registers if they’ll be
destroyed

– Puts return value (if any) in
eax

• Callee returns: pop return
address from stack & jump to it

Example
int globalvar;

int
callee(int a, int b)
{

return a + b;

callee:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

caller:
pushl %ebp

9/4/2008CS 3204 Fall 2008 12

;
}

int
caller(void)
{

return callee(5, globalvar);
}

movl %esp, %ebp
pushl globalvar
pushl $5
call callee
popl %edx
popl %ecx
leave
ret

3

Pintos Context Switch (1)
static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
if (cur != next)

Stack
…

next
cur

&retlabelesp

9/4/2008CS 3204 Fall 2008 13

• threads/thread.c, threads/switch.S

if (cur != next)
prev = switch_threads (cur, next);

retlabel: /* not in actual code */
schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

&retlabelp

Pintos Context Switch (2)
switch_threads:

Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel

// switch_thread (struct thread *cur, struct thread *next)

9/4/2008CS 3204 Fall 2008 14

Save current stack pointer to old thread s stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

&retlabelp &retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

Famous
Quote For
The Day
If the new process paused because it was swapped out,
set the stack level to the last call to savu(u_ssav). This
means that the return which is executed immediately
after the call to aretu actually returns from the last

ti hi h did th

9/4/2008CS 3204 Fall 2008 15

• Source: Dennis Ritchie, Unix V6 slp.c (context-
switching code) as per The Unix Heritage
Society (tuhs.org); gif by Eddie Koehler.

routine which did the savu.

You are not expected to understand this.

Pintos Context Switch (3)
• All state is stored on outgoing thread’s stack, and

restored from incoming thread’s stack
– Each thread has a 4KB page for its stack
– Called “kernel stack” because it’s only used when thread

executes in kernel mode
– Mode switch automatically switches to kernel stack

9/4/2008CS 3204 Fall 2008 16

• x86 does this in hardware, curiously.
• switch_threads assumes that the thread that’s switched

in was suspended in switch_threads as well.
– Must fake that environment when switching to a thread for the

first time.
• Aside: none of the thread switching code uses privileged

instructions:
– that’s what makes user-level threads (ULT) possible

Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |

• One page of
memory captures
a process’s kernel
stack + PCB

• Don’t allocate

9/4/2008CS 3204 Fall 2008 17

+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

• Don t allocate
large objects on
the stack:
void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

Context Switching, Take 2

Process 1

Process 2

intr_entry:
(saves entire CPU state)
(switches to kernel stack) intr_exit:

(restore entire CPU state)
(switch back to user stack)

iret

9/4/2008CS 3204 Fall 2007 18

Kernel

user mode

kernel mode

switch_threads: (in)
(saves caller’s state)

switch_threads: (out)
(restores caller’s state)

(kernel stack switch)

4

External Interrupts & Context Switches
intr_entry:

/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */
cld
mov $SEL_KDSEG, %eax /* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es
leal 56(%esp) %ebp /* Set up frame pointer */

9/4/2008CS 3204 Fall 2008 19

leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp
call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp
/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */
/* Restore caller's registers. */
popal; popl %gs; popl %fs; popl %es; popl %ds
iret /* Return to current process, or to new process after context switch. */

Context Switching: Summary

• Context switch means to save the current and
restore next process’s execution context

• Context Switch != Mode Switch
– Although mode switch often precedes context switch

9/4/2008CS 3204 Fall 2008 20

g p
• Asynchronous context switch happens in

interrupt handler
– Usually last thing before leaving handler

• Have ignored so far when to context switch &
why → next

