
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 27

Announcements
• Project 4 due Dec 10
• Ribbon-Cutting Ceremony/Demo for extra credit

– Dec 11, Reading Day: 1:30pm-3:00pm
– McB 124

• Final Exam Announcement

12/4/2008CS 3204 Fall 2008 2

Final Exam Announcement
• Tuesday:

– wrap-up
– Quiz (voluntary)
– Demo preparation
– Q&A for final exam
– Teaching evaluations

Virtualization

Definitions
• Terms is somewhat ill-defined, generally

– A machine that’s implemented in software, rather than
hardware

– A self-contained environment that acts like a computer
– An abstract specification for a computing device

(instruction set, etc.)(st uct o set, etc)
• Common distinction:

– (language-based) virtual machines
• Instruction set usually does not resemble any existing

architecture
• Java VM, .Net CLR, many others

– virtual machine monitors (VMM)
• instruction set fully or partially taken from a real architecture

12/4/2008CS 3204 Fall 2008 4

Use of Virtual Machines

• Test applications
• Program / debug OS
• Simulate networks

12/4/2008CS 3204 Fall 2008 5

• Isolate applications
• Monitor for intrusions
• Inject faults
• Resource sharing/hosting

Types of Virtual Machines

12/4/2008CS 3204 Fall 2008 6

• Type I • Type II

2

VMM Classification

Guest OS sees
true hardware
interface

Guest OS sees
(almost) hardware
interface, has some

f

Guest OS sees
virtualized
hardware
i t f

Unmodified Guest Ported Guest

Paravirtualized
guest drivers

12/4/2008CS 3204 Fall 2008 7

awareness of
virtualization

interface

Hypervisor runs
directly on host
hardware

VMware ESX
MS Virtual Server

Xen
Windows 7

Hypervisor runs
on host OS

qemu, VMware
Workstation,
VMware GSX

UML

Type I

Type II
Kernel Support
for VMM: skas3,

UMLinux, vmware.ko

Virtualizing the CPU
• Basic mode: direct execution
• Requires Deprivileging

– (Code designed to run in supervisor mode will be run
in user mode)

• Hardware vs. Software Virtualization

12/4/2008CS 3204 Fall 2008 8

– Hardware: “trap-and-emulate”
• Not possible on x86 prior to introduction of Intel/VT &

AMD/Pacifica
– Software:

• Either require cooperation of guests to not rely on traps for
safe deprivileging

• Or binary translation to avoid running unmodified guest OS
code (note: guest user code is always safe to run!)

Binary translation vs trap-and-
emulate

• Adams [ASPLOS 2006] asked:
– How fast is binary translation?
– Is it always slower than trap-and-emulate?

• Surprising result: binary translation usually beats
trap and emulate Why?

12/4/2008CS 3204 Fall 2008 9

trap-and-emulate. Why?
– Binary translation is highly optimized:

• most instructions are translated as IDENT (identical),
preserving most compiler optimizations and only slightly
increasing code size

• binary translation can be adaptive: if you know an instruction
is going to trap, inline part of all of trap handler. Way cheaper
than actually trapping.

Virtualizing MMU
• Guest OS programs page table mapping virtual

-> physical
• Hypervisor must trace guest’s page tables,

apply additional step from physical -> hardware
Sh d t bl h i k

12/4/2008CS 3204 Fall 2008 10

• Shadow page tables: hypervisor makes a copy
of page table, installs copy in MMU
– This approach is used both in ESX & full

virtualization via Intel/VT
• Xen paravirtualization: guest’s page table are

directly rewritten to map virtual -> hardware

MMU Paravirtualization

• Paravirtualized MMU • Shadow Page Table

Primary

12/4/2008CS 3204 Fall 2008 11

Virtual Physical Hardware

Shadow

How much do shadow page tables
hurt?

• Recall: a primary argument for paravirtualization
was avoiding shadow page tables

• Turns out that shadow page tables can be
implemented very efficiently

Th t d d d (l if t d

12/4/2008CS 3204 Fall 2008 12

– They are created on demand (only if guest code
actually faults), and only needed translation range is
created (e.g., single 2nd level page table in 32bit
model)

– Cost of tracing updates by guest is minimized via
adaptive binary translation

• In practice, seems to be a non-issue!

3

Virtualizing I/O

• Xen • ESX

12/4/2008CS 3204 Fall 2008 13
Source: VMware white paper on virtualization considerations.

12/4/2008CS 3204 Fall 2008 14
Source: VMware paper on hypervisor performance

Performance Impact of I/O
Virtualization

• ESX mainly outperforms Xen because
– Costs of CPU & MMU virtualization are (relatively small)
– It uses native drivers in hypervisor (like Xen 1.0 did, really)

• Hardware vendors port their Linux drivers to Xen
– Thus avoids inter-domain communication

Caveat: Xen is being continuously improved (previous

12/4/2008CS 3204 Fall 2008 15

– Caveat: Xen is being continuously improved (previous
slide is 3.0.* version); I/O performance still remains
challenging

• Note: guest drivers are simple, and can be
paravirtualized
– Most OS have an interface for 3rd party drivers; but no

interface to have core modules (e.g. memory
management) replaced!

Memory Management in ESX
• Have so far discussed how VMM achieves isolation

– By ensuring proper translation
• But VMM must also make resource management

decisions:
– Which guest gets to use which memory, and for how long

• Challenges:

12/4/2008CS 3204 Fall 2008 16

• Challenges:
– OS generally not (yet) designed to have (physical memory)

taken out/put in.
– Assume (more or less contiguous) physical memory starting at 0
– Assume they can always use all physical memory at no cost (for

file caching, etc.)
– Unaware that they may share actual machine with other guests
– Already perform page replacement for their processes based on

these assumptions

Goals for memory management
• Performance

– Is key. Recall that
• avg access = hit rate * hit latency + miss rate * miss penalty
• Miss penalty is huge for virtual memory

• Overcommiting

12/4/2008CS 3204 Fall 2008 17

Overcommiting
– Want to announce more physical memory to guests

that is present, in sum
– Needs a page replacement policy

• Sharing
– If guests are running the same code/OS, or process

the same data, keep one copy and use copy-on-write

Page Replacement
• Must be able to swap guest pages to disk

– Question is: which one?
– VMM has little knowledge about what’s going on

inside guest. For instance, it doesn’t know about
guest’s internal LRU lists (e.g., Linux page cache)

P t ti l bl D bl P i

12/4/2008CS 3204 Fall 2008 18

• Potential problem: Double Paging
– VMM swaps page out (maybe based on hardware

access bit)
– Guest (observing the same fact) – also wants to

“swap it out” – then VMM must bring in the page from
disk just so guest can write it out

• Need a better solution

4

Ballooning
• What if we could trick guest into reducing its memory

footprint?
• Download balloon driver into guest kernel

– Balloon driver allocates pages, possibly triggering guest’s
replacement policies.
B ll d i i (f t i d) d

12/4/2008CS 3204 Fall 2008 19

– Balloon driver pins page (as far as guest is concerned) and
(secretly to guest) tells VMM that it can use that memory for
other guests

– Deflating the balloon increases guest’s free page pool
• Relies on existing memory in-kernel allocators (e.g.,

Linux’s get_free_page()
• If not enough memory is freed up by ballooning, do

random page replacement

Ballooning

12/4/2008CS 3204 Fall 2008 20

Source: VMware

Sharing Memory

• Content-based sharing memory
• Idea: scan pages, compute a hash. If hash

is different, page content is different. If
hash matches compare content

12/4/2008CS 3204 Fall 2008 21

hash matches, compare content.
• If match, map COW
• Aside: most frequently shared page is the

all-zero page (why?)

Page Sharing (1)

12/4/2008CS 3204 Fall 2008 22

Source: Waldspurger ‘02

Page Sharing (2)

12/4/2008CS 3204 Fall 2008 23

Source: Waldspurger ‘02

Sharing Efficiency

• Ideal conditions: (all guests equal, run
same workload) – up to 60% savings

• Realistic conditions (measured in
production system)

12/4/2008CS 3204 Fall 2008 24

production system)

5

Allocation

• How should machine memory be divvied up
among guest?

• Observation: not all are equally important
• (Traditional OS approach of maximizing system-

12/4/2008CS 3204 Fall 2008 25

(Traditional OS approach of maximizing system
wide utility – as, for instance, global replacement
algorithm would do - is not applicable)

• Use share-based approach
– Graceful degradation under overload
– Work conserving under underload

Proportional Sharing of Memory
• Could simple proportional split be applied?

– As is done in CPU algorithms (VTRR, etc.)?
• Answer appears to be no:

– It doesn’t take into account if memory is actually used
(that is accessed) by clients

12/4/2008CS 3204 Fall 2008 26

(that is, accessed) by clients
• Idea: develop scheme that takes access into

account
– Tax idle memory higher (a “progressive” task on

unused, in a way)
• Determine degree of idleness by sampling

12/4/2008CS 3204 Fall 2008 27

Source: Waldspurger ‘02

