
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 26

Announcements

• Project 4 due Dec 10
• Reading Chapter 10-12
• December 11, Thursday

12/4/2008CS 3204 Fall 2008 2

– 1:30pm opening ceremony of new lab space
– 20 pts of extra credit if you demo Pintos on

your laptop

Protection & Security

Security Requirements & Threats

• Requirement
– Confidentiality
– Integrity
– Availability

• Threat
– Interception
– Modification
– Interruption

12/4/2008CS 3204 Fall 2008 4

– Authenticity – Fabrication

The goal of a protection system is to ensure these
requirements and protect against accidental or
intentional misuse

Policy vs Mechanism

• First step in addressing security: separate
the “what should be done” from the “how it
should be done” part

• The security policy specifies what is

12/4/2008CS 3204 Fall 2008 5

• The security policy specifies what is
allowed and what is not

• A protection system is the mechanism that
enforces the security policy

Protection: AAA

• Core components of any protection mechanism
• Authentication

– Verify that we really know who we are talking to
• Authorization

12/4/2008CS 3204 Fall 2008 6

Authorization
– Check that user X is allowed to do Y

• Access enforcement
– Ensure that authorization decision is respected
– Hard: every system has holes

• Social vs technical enforcement

2

Authentication Methods
• Passwords

– Weakest form, and most common
– Subject to dictionary attacks
– Passwords should not be stored in clear text, instead,

use one-way hash function

12/4/2008CS 3204 Fall 2008 7

use one-way hash function
• Badge or Keycard

– Should not be (easily) forgeable
– Problem: how to invalidate?

• Biometrics
– Problem: ensure trusted path to device

Authorization

• Once user has been authenticated, need
some kind of database to keep track of
what they are allowed to do

• Simple model:
Objects
(fil)

12/4/2008CS 3204 Fall 2008 8

• Simple model:
– Access Matrix File 1 TTY 2

User A Can Read Exclusive
Access

User B Can R/W --

Principals
(e.g. users)

(e.g. files, resources)

Variations on Access Control Matrices

• RBAC (Role-based Access Control)
– Principals are no longer users, but roles
– Examples: “mail admin”, “web admin”, etc.

• TE (Type Enforcement)

12/4/2008CS 3204 Fall 2008 9

(yp)
– Objects are grouped into classes or types; columns of

matrix are then labeled with those types
• Domains vs Principals

– Rows represent “protection domain”
– Processes (or code) execute in one domain (book

uses this terminology)

Representing Access Matrices

• Problem: access matrices can be huge
– How to represent them in a condensed way?

• Two choices: by row, or by column
C

12/4/2008CS 3204 Fall 2008 10

• By row: Capabilities
– What is principal X allowed to do?

• By column: Access Control Lists
– Who has access to resource Y?

Access Control Lists
• General: store list of <user, set of privileges> for

each object
• Example: files. For each file store who is allowed

to access it (and how)
M t t fil t t it

12/4/2008CS 3204 Fall 2008 11

• Most contemporary file systems support it.
• Groups can be used to compress the

information:
– Old-style Unix permissions rwxr-xr-x

• Q.: where in the filesystem would you store
ACLs/permissions?

Capabilities

• General idea: store (capability) list of <object,
set of privileges> for each user

• Typically used in systems that must be very
secure

12/4/2008CS 3204 Fall 2008 12

– Default is empty capability list
• Capabilities also often function as names

– Can access something if you know the name
– Must make names unforgeable, or must have system

monitor who holds what capabilities (e.g., by storing
them in protected area)

3

Examples of Attacks

• Abuse of valid privilege
– Admin decides to delete your mp3s

• Denial of service attack
R thi l P4

12/4/2008CS 3204 Fall 2008 13

– Run this loop on your P4:
• while (1) { mkdir(“x”); chdir(“x”); }

• Sniffing/Listening attack
• Trojan Horse
• Worm or virus

Simple Stack Overflow Example
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int
unsafe_function()
{

char buf[8];
printf("Enter your name: ");
gets(buf);
printf("Your name is: %s\n", buf);

> > nm stackattack | grep do_something_bad
08048456 T do_something_bad
> od -h badinput
0000000 8456 0804 8456 0804 8456 0804 8456 0804
*
0000120
./stackattack < badinput
Enter your name: Your name is: V
V

12/4/2008CS 3204 Fall 2008 14

printf(Your name is: %s\n , buf);
}

void
do_something_bad()
{

printf("do_something_bad called!\n");
}

int
main()
{

unsafe_function();
}

V
do_something_bad called!
do_something_bad called!

• Simplified variant of “return-to-libc” attack in
which attacker redirects control to function
embedded in program (which then
compromises security)

• In practice, attacker usually sends position-
independent code along that exec()’s a shell

Defense against Stack Overflow
• Static Defenses:

– Use of type-safe languages
– Code analysis

• Dynamic Defenses:
– Detect stack corruption before abnormal control transfer

occursoccurs
• Canaries, stack frame reallocation
• -fstack-protector in gcc (ProPolice)

– Prevent execution of any code on stack
• Remove execute privilege from stack
• Generalization: W X

– Address Space Randomization
• Helps against attacks that require that attacker knows address

in program (less effective on 32-bit systems)

12/4/2008CS 3204 Fall 2008 15

Principle of Least Privilege

• Containment
• “need-to-know” basis: every process

should have only access right for the
operations it needs to do its work

12/4/2008CS 3204 Fall 2008 16

operations it needs to do its work
– Hard to implement:

• how can you be sure the program will still work?
How can you be sure you’ve given just enough
privileges and no more?

– Example: Linux SE

Other Countermeasures

• Logging:
– Keep an audit log of all actions performed
– Must protect log (from theft & forgery)

V ifi ti & P f

12/4/2008CS 3204 Fall 2008 17

• Verification & Proofs
– Problem of verifying the specification vs.

implementation

Trusted Computing Base

• The part of the system that enforces
access control decisions
– Also protects authentication information

• Issues:

12/4/2008CS 3204 Fall 2008 18

Issues:
– Single Bug in TCB may compromise entire

security policy
– Need to keep it small and manageable
– Usually: entire kernel is part of TCB (huge!)

• Weakest link phenomenon

4

• MLS-Multilevel
Security
– Unclassified
– Confidential
– Secret
– Top Secret

Trusted Systems

12/4/2008CS 3204 Fall 2008 19

• No read up
• No write down

– *-property

Properties:
• Complete mediation (mandatory access control on every access)
• Isolated/tamper-proof reference monitor
• Verification (the hardest)

Security & System Structure
• Q.: Does system structure matter when building

secure systems?
• Monolithic kernels: processes call into kernel to

obtain services (Pintos, Linux, Windows)
Mi k l ll l i t k l t

12/4/2008CS 3204 Fall 2008 20

• Microkernels: processes call only into kernel to
send/receive messages, they communicate with
other processes to obtain services
– Asbestos [SOSP’05] exploits this to track information

flow across processes
– HiStar [OSDI’06] optimizes this further by avoiding

explicit message passing; using “call gates” instead

Language-Based Protection

• Based on type-safe languages (Java, C#,
etc.)
– Do not allow direct memory access
– Include access modifiers (private/public, etc.)

12/4/2008CS 3204 Fall 2008 21

(p p ,)
– Verify code before they execute it with respect

to these safety property
• Build security systems on top of type-safe

language runtimes which associate code
with sets of privileges

