
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 25

Announcements
• Project 4 due Dec 10 11:59pm

– Don’t postpone to after Thanksgiving
– Should get done before break: buffer cache (so

all regression tests pass), and have designed and
partially implemented on disk data structures

11/20/2008CS 3204 Fall 2008 2

partially implemented on-disk data structures
(inode + index trees)

• Project 4 Help Session Slides online
• Check exam time and let me know of

possible conflicts as per University policy
• Reading Chapter 10-12

Address Spaces vs
Protection Domains

Address Spaces & Protection Domains

• Normal case: each user process has its own
address space & own protection domain

• Sharing an address space means to put the same
meaning to a particular virtual address

• Sharing a protection domain means to have the g p
same access rights to a particular piece of
memory

• The two are not always identical: Single address
space OS
– all processes share one address space – ideally 64bit
– advantage: can use pointers as names for objects
– disadvantage: loading/linking slightly more complex

11/20/2008CS 3204 Fall 2008 4

Address Space & Threads

• Real-world combinations
of address spaces 1 many

1 thread/space MS DOS Traditional Unix

11/20/2008CS 3204 Fall 2008 5

1 thread/space MS-DOS
MacOS-9

Traditional Unix
(BSD 4.3, 4.4,
SVR3); Pintos

many threads/space
multi-threading

Embedded
Systems;
Pilot (1978)

VMS, Mach,
Win/NT, Solaris,
Linux

NB: threads listed here are “kernel-level” threads (KLT) – threads of which
the kernel is aware

Kernel-level vs User-level
ThreadsThreads

2

Kernel-level vs User-level Threads

• Kernel-level threads: (KLT)
– Aka 1:1 model
– Kernel knows about them:

• Have kernel-assigned thread id + TCB
• Have their own kernel stack

11/20/2008CS 3204 Fall 2008 7

Have their own kernel stack

• Alternative: it is also possible to
build “user-level” threads (ULT)
– Kernel is unaware of them
– Aka 1:N model

• Combinations of these models are
possible as well

User-level Threads
• Usually implemented using library

– (recall: core of context switching code in Pintos did
not require any privileged instructions – so can do it in
a user program also)

– Possible to implement via setjmp/longjmp
Si il t “ ti ” t

11/20/2008CS 3204 Fall 2008 8

• Similar to “co-routine” concept
• Advantages

– can be lightweight
– context switches can be fast (don’t have to enter

kernel, and since shared address space no TLB flush
required)

– can be done (almost) portably for any OS

User-level Threads - Issues
• How can traditional RUNNING/READY/BLOCKED state

model be implemented?
– Problem: RUNNING->BLOCKED transitions should cause another

READY thread to be scheduled
– Q.: what happens if user-level thread calls the “read()” system call

and blocks in kernel?
• Must use elaborate mechanisms that avoid blocking in the

kernel

11/20/2008CS 3204 Fall 2008 9

kernel
– Option: Redirect all system calls that might block entire process and

replace them with non-blocking versions
– Then poll kernel later when I/O has completed (or have kernel notify

you)
– Overhead: may require additional system call for starting and

completing I/O
• Since kernel sees only one thread, can use at most 1 CPU –

not truly SMP-capable
– But: where application-specific scheduling is desirable, it can be

more easily implemented in a ULT system

Preemption vs Nonpreemption
• Implementing preemption in user-level threads

requires timer- or I/O-interrupt like notification
facility (SIGALRM + SIGIO in Unix)
– But then overhead of saving all state returns

• Truly lightweight user level threads are non

11/20/2008CS 3204 Fall 2008 10

• Truly lightweight user-level threads are non-
preemptive
– Highly scalable in number of threads
– Makes implementing locks really easy – no need for

atomic instructions!
– But then: cannot preempt uncooperative threads, lose

ability to round-robin schedule CPU bound threads

Aside: UNIX/POSIX Signals
• General notification interface that is used for many things

in POSIX-like systems
• Examples (read kill(2), signal(2), signal(7)):

– Job control (Ctrl-C, Ctrl-Z) send SIGINT/SIGSTOP to process
– Processes can send each other (or themselves) signals
– Signals are used for error conditions: SIGSEGV SIGILL

11/20/2008CS 3204 Fall 2008 11

Signals are used for error conditions: SIGSEGV, SIGILL
– Also used for timers, I/O conditions, profiling

• Default handling depends on signal: ignore, terminate,
stop, core-dump
– processes can override handling
– kernel may invoke signal handlers if so instructed: like interrupt

handlers – same issues apply wrt safety
• POSIX signals are per-process, complex rules describe

which thread within process may handle a signal

Managing Stack Space
• Stacks require continuous part of virtual address

space
– On 32-bit systems: virtual address space

fragmentation can result
– only have 3GB total in user space for code, data,

shared libs – limits the number of threads
• What size should stack have?

stack1

guard

11/20/2008CS 3204 Fall 2008 12

• This is an issue for both ULT & KLT
• How to detect stack overflow (or grow stack)?

– Detect in software or in hardware (or ignore)
– Stack growth usually only available in KLT

implementations
– Compiler support can create discontiguous stacks

• Related Issues: how to implement
– Get local thread id “pthread_self()”
– Thread-local storage (TLS)

stack2

guard

3

M:N Model

11/20/2008CS 3204 Fall 2008 13

• Solaris Lightweight Processes

M:N Model (cont’d)
• Invented for use in Solaris OS early 90s
• Championed for a while

– Idea was to get the best of both worlds
– Fast context switches if between user-level threads

Y t h t l it lti l CPU

11/20/2008CS 3204 Fall 2008 14

– Yet enough concurrency to exploit multiple CPUs
• Since abandoned in favor of kernel-level threads

only approach
– Too complex – what’s the “right” number of LWP?
– 2-level scheduling/resource management was hard:

both user/kernel operated half-blind
– Interesting history can be found here

Multi-Threading in Linux
• Went through different revisions

– Started as 1:1 with minimal kernel support (only
clone(2)), and high overhead (“linux-threads”)

• Today (Linux 2.6): NPTL – Next-Generation
POSIX Thread Library

11/20/2008CS 3204 Fall 2008 15

POSIX Thread Library
– 1:1 model

• optimizes synchronization via “futexes”
– avoids mode switch for common case of uncontended

locks by performing atomic operation
– constant-time scheduling operation allow for scaling

in number of threads

Summary

• Address Spaces vs Protection Domains
• Kernel vs User-Level Threads

– Don’t confuse “kernel-level threads” with “kernel
threads”

11/20/2008CS 3204 Fall 2008 16

threads
• kernel threads: never execute user code, execute

kernel code, in kernel mode, only; are not associated
with user address space

• kernel-level threads: are threads that execute user
code, can call into the kernel via syscalls/page faults;
are associated with a user address space

• both are viewed as schedulable entities by the kernel

