
1

CS 3204
Operating Systems

Godmar Back

Lecture 24

11/20/2008CS 3204 Fall 2008 2

Announcements

• Project 4 due Dec 10 11:59pm
– Don’t postpone to after Thanksgiving
– Should get done before break: buffer cache (so

all regression tests pass), and have designed and
partially implemented on-disk data structures
(inode + index trees)

• Project 4 Help Session Slides online
• Check exam time and let me know of

possible conflicts as per University policy
• Reading Chapter 10-12

11/20/2008CS 3204 Fall 2008 3

Filesystems

Linux VFS
Volume Managers

11/20/2008CS 3204 Fall 2008 4

Example: Linux VFS

• Reality: system must
support more than one
file system at a time
– Users should not notice a

difference unless
unavoidable

• Most systems, Linux
included, use an object-
oriented approach:
– VFS-Virtual Filesystem

11/20/2008CS 3204 Fall 2008 5

Example: Linux VFS Interface
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);

};

11/20/2008CS 3204 Fall 2008 6

Volume Management

• Traditionally, disk is exposed as a block device
(linear array of blocks abstraction)
– Refinement: disk partitions = subarray within block

array
• Filesystem sits on partition
• Problems:

– Filesystem size limited by disk size
– Partitions hard to grow & shrink

• Solution: Introduce another layer – the Volume
Manager (aka “Logical Volume Manager”)



2

11/20/2008CS 3204 Fall 2008 7

Volume Manager

• Volume Manager separates physical composition of
storage devices from logical exposure

ext3
/home

ext3
/usr

jfs
/opt

LV1 LV2 LV3

VolumeGroup

PV1 PV2 PV3 PV4

filesystems

logical
volumes

physical
volumes

11/20/2008CS 3204 Fall 2008 8

RAID – Redundant Arrays of
Inexpensive Disks

• Idea born around 1988
• Original observation: it’s cheaper to buy multiple, small

disks than single large expensive disk (SLED)
– SLEDs don’t exist anymore, but multiple disks arranged as a

single disk still useful
• Can reduce latency by writing/reading in parallel
• Can increase reliability by exploiting redundancy

– I in RAID now stands for “independent” disks
• Several arrangements are known, 7 have “standard

numbers”
• Can be implemented in hardware/software
• RAID array would appear as single physical volume to

LVM

11/20/2008CS 3204 Fall 2008 9

RAID 0

• RAID: Striping data across disk
• Advantage: If disk accesses go to different disks,

can read/write in parallel → decrease in latency
• Disadvantage: Decreased reliability

MTTF(Array) = MTTF(Disk)/#disks

11/20/2008CS 3204 Fall 2008 10

RAID 1

• RAID 1: Mirroring (all writes go to both disks)
• Advantages:

– Redundancy, Reliability – have backup of data
– Potentially better read performance than single disk –

why?
– About same write performance as single disk

• Disadvantage:
– Inefficient storage use

11/20/2008CS 3204 Fall 2008 11

Using XOR for Parity

• Recall:
– X^X = 0
– X^1 = !X
– X^0 = X

• Let’s set: W=X^Y^Z
– X^(W)=X^(X^Y^Z)=(X^X)^Y^Z=0^(Y^Z)=Y^Z
– Y^(X^W)=Y^(Y^Z)=0^Z=Z

• Obtain: Z=X^Y^W (analogously for X, Y)

X Y Z W

XOR 0 1

0 0 1

1 1 0

11/20/2008CS 3204 Fall 2008 12

RAID 4

• RAID 4: Striping + Block-level parity
• Advantage: need only N+1 disks for N-disk capacity & 1

disk redundancy
• Disadvantage: small writes (less than one stripe) may

require 2 reads & 2 writes
– Read old data, read old parity, write new data, compute & write

new parity
– Parity disk can become bottleneck



3

11/20/2008CS 3204 Fall 2008 13

RAID 5

• RAID 5: Striping + Block-level Distributed Parity
• Like RAID 4, but avoids parity disk bottleneck
• Get read latency advantage like RAID 0
• Best large read & large write performance
• Only remaining disadvantage is small writes

– “small write penalty”

11/20/2008CS 3204 Fall 2008 14

Other RAID Combinations

• RAID-6: dual parity, code-based, provides
additional redundancy (2 disks may fail before
data loss)

• RAID (0+1) and RAID (1+0):
– Mirroring+striping

11/20/2008CS 3204 Fall 2008 15

Filesystems

Advanced Techniques

Delayed Block Allocation,
Preallocation, and Defragmentation
• Idea: delay block allocation until write back

(eviction time)
– Combine with data structure that simplifies finding

continuous sections of free blocks
– Increases chances for contiguous physical layout of

blocks that are likely to be accessed sequentially
• Online defragmentation

– Some filesystem reallocate blocks to improve spatial
locality

• Preallocation
– Supports guarantee of contiguous space without

actually writing

11/20/2008CS 3204 Fall 2008 16

Avoiding in-place updates
• Most traditional designs allocate blocks once and for all (when

files is created, grown, etc.)
• All subsequent updates go this location (whether it requires

seeks or not – makes writes not sequential)
• Idea:

– Write wherever there’s a free block, write a new version of
metadata that points to it – more to write, but sequential (thus
faster)

– What to do with old data
• Can garbage collect and reclaim
• Keep around and offer to user as snapshot of past (e.g., NetApp’s

.snapshot directory)

• Pioneered in LFS (log-structured filesystem), see [Rosenblum
1991]
– For RAID, avoids small write problem

11/20/2008CS 3204 Fall 2008 17

Example: COW transactions in ZFS

11/20/2008CS 3204 Fall 2008 18

Source: ZFS – The Last Word in Filesystems



4

End-to-end Data Integrity

• Most current file systems assume no
undetected bit errors in storage stack
–No longer true in practice: disk capacity

increases exponentially, error rate does not
decrease (1 in 1014 to 1 in 1015 undetected
and uncorrected errors)

• File systems can do end-2-end
checksumming to detect corrupted data
–Either only for metadata (ext4)
–For all data (ZFS)

11/20/2008CS 3204 Fall 2008 19

Increased Fault Tolerance

• Traditional approach:
– File system does minimal state replication

• Maybe superblock, but not file data or meta data
– Relies on underlying layer: RAID mirroring

• Single bad block on disk may lead to loss of
entire disk
– (in RAID case: silent errors may occur, since first

READ is believed)
• ZFS approach: have file system replicate

data and metadata in storage pool
– User decides how many copies

11/20/2008CS 3204 Fall 2008 20

Variable Blocksizes

• Recall trade-off involving block size
– Too small – low data rate, high metadata

overhead
– Too large – much space lost to internal

fragmentation (since many files are small)
• Ideally, block size matches size of write

requests done to file (“object size”)
– No internal fragmentation
– No read/modify/write operations

• ZFS supports this

11/20/2008CS 3204 Fall 2008 21

Metadata Consistency

• Traditional file systems separate designs for
metadata (directories and index trees) from
designs chosen for metadata consistency
– Result: need synchronous writes, logging, or write

ordering.
– Consistency often retrofitted (e.g., ext2 to ext3)
– Cannot make use of atomic updates (which would

avoid need for either of these approaches!)
• Alternative: design entire filesystem so that

atomic updates become possible

11/20/2008CS 3204 Fall 2008 22

ZFS’s Approach

11/20/2008CS 3204 Fall 2008 23

Source: ZFS – The Last Word in Filesystems

Other Developments

• Built-in encryption and compression
• Built-in support for incremental backup
• Built-in support for indexing
• Explicit support for SSD (solid-state

drives)
• Support for hybrid drives (or supporting

solid state)
– E.g. Vista Ready Boost – uses solid state to

absorb random writes and reads
11/20/2008CS 3204 Fall 2008 24


