
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 23

Announcements

• Project 4 Help Session Monday 6-8pm
room TBD

11/13/2008CS 3204 Fall 2008 2

Filesystems

11/13/2008CS 3204 Fall 2008 3

Consistency & Logging

Filesystems & Managing Faults
• Filesystem’s promise:

– Persistence
– Defined behavior in the presence of faults

• Need Failure Model
– Define acceptable failures (disk head hits dust

11/13/2008CS 3204 Fall 2008 4

Define acceptable failures (disk head hits dust
particle, scratches disk – you will lose some data)

– Define which failure outcomes are unacceptable
• Need a strategy to avoid unacceptable failure

outcomes
– Proactive (avoid them)
– Reactive (recover from them)

Proactive Methods

• Use atomic changes
– construct larger atomic changes from the

small atomic units available (i.e., single sector
writes))

• Idea: use state duplication

11/13/2008CS 3204 Fall 2008 5

write(data)
version++
write_atomic(versionloc1, version)
write_multiple(dataloc1, data)
write_atomic(versionloc2, version)
write_multiple(dataloc2, data)

write(data)
version++
write_atomic(versionloc1, version)
write_multiple(dataloc1, data)
write_atomic(versionloc2, version)
write_multiple(dataloc2, data)

read()
v1 = read(versionloc1)
v2 = read(versionloc2)
data1 = read(dataloc1)
data2 = read(dataloc2)
return v1 == v2 ? data1 : data2;

read()
v1 = read(versionloc1)
v2 = read(versionloc2)
data1 = read(dataloc1)
data2 = read(dataloc2)
return v1 == v2 ? data1 : data2;

Reactive Methods
• Option 1: On failure, retry entire computation

– not a good model for persistent filesystems
• Option 2: Define recovery procedure to deal with

unacceptable failures:
– Recovery moves from an incorrect state A to correct state

BB
– Must understand possible incorrect states A after crash!
– A is like “snapshot of the past”
– Anticipating all states A is difficult

• For file systems, option 2 means to ensure that on-
disk changes are ordered such that if crash occurs
after any step, a recovery program can either undo
change or complete it

11/13/2008CS 3204 Fall 2008 6

2

Unix Filesystem Overview

file2file1

dir2 (i0, “la”) (i3, “.”)

11/13/2008CS 3204 Fall 2008 7

i0 i3i2i1inode table

dir1 (i1, “.”) (i3, “d”)(i0, “a”)

Sensible Invariants
• In a Unix-style file system, ideally, we would want that:

– File & directory names are unique within parent directory
– Free list/map accounts for all free objects

• all objects on free list are really free
– All data blocks belong to exactly one file (only one pointer to

them)

11/13/2008CS 3204 Fall 2008 8

– Inode’s ref count reflects exact number of directory entries
pointing to it

– Don’t show previously deleted data to applications
• Some of these invariants

– can be reestablished via fsck after crash
– must be maintained proactively before crash (either because

fsck couldn’t fix them or because it would lead to unacceptable
state if user skipped fsck)

– are not maintained because of cost

Crash Recovery (fsck)
• After crash, fsck runs and performs the equivalent of

mark-and-sweep garbage collection
• Follow, from root directory, directory entries

– Count how many entries point to inode, adjust ref count
• Recover unreferenced inodes:

– Scan inode array and check that all inodes marked as used are

11/13/2008CS 3204 Fall 2008 9

y
referenced by dir entry

– Move others to /lost+found
• Recomputes free list:

– Follow direct blocks+single+double+triple indirect blocks, mark
all blocks so reached as used – free list/map is the complement

• In following discussion, keep in mind what fsck could and
could not fix!

Example 1: file create
• On create(“foo”), have to

1. Scan current working dir for entry “foo” (fail if found);
else find empty slot in directory for new entry

2. Allocate an inode #in
3. Insert pointer to #in in directory: (#in, “foo”)

11/13/2008CS 3204 Fall 2008 10

4. Write a) inode & b) directory back
• What happens if crash after 1, 2, 3, or 4a),

4b)?
• Does order of inode vs directory write back

matter?
• Rule: never write persistent pointer to object

that’s not (yet) persistent

Example 2: file unlink
• To unlink(“foo”), must

1. Find entry “foo” in directory
2. Remove entry “foo” in directory
3. Find inode #in corresponding to it, decrement #ref count
4. If #ref count == 0, free all blocks of file
5 W it b k i d & di t

11/13/2008CS 3204 Fall 2008 11

5. Write back inode & directory
• Q.: what’s the correct order in which to write back

inode & directory?
• Q.: what can happen if free blocks are reused before

inode’s written back?
• Rule: first persistently nullify pointer to any object

before freeing it (object=freed blocks & inode)

Example 3: file rename

• To rename(“foo”, “bar”), must
1. Find entry (#in, “foo”) in directory
2. Check that “bar” doesn’t already exist
3 Remove entry (#in “foo”)

11/13/2008CS 3204 Fall 2008 12

3. Remove entry (#in, foo)
4. Add entry (#in, “bar”)

• Suppose crash after directory block
containing old “foo” was written back, but
before “bar” entry was written back

3

Example 3a: file rename
• To rename(“foo”, “bar”), conservatively

1. Find entry (#i, “foo”) in directory
2. Check that “bar” doesn’t already exist
3. Increment ref count of #i
4. Add entry (#i, “bar”) to directory

11/13/2008CS 3204 Fall 2008 13

y () y
5. Remove entry (#i, “foo”) from directory
6. Decrement ref count of #i

• Worst case: have old & new names to refer to
file

• Rule: never nullify pointer before setting a new
pointer

Example 4: file growth
• Suppose file_write() is called.

– First, find block at offset
• Case 1: metadata already exists for block (file is not

grown)
– Simply write data block

11/13/2008CS 3204 Fall 2008 14

• Case 2: must allocate block, must update metadata
(direct block pointer, or indirect block pointer)
– Must write changed metadata (inode or index block) & data

• Both writeback orders can lead to acceptable failures:
– File data first, metadata next – may lose some data on crash
– Metadata first, file data next – may see previous user’s deleted

data after crash (very expensive to avoid – would require writing
all data synchronously)

FFS’s Consistency Model
• Berkeley FFS (Fast File System) formalized rules for file system

consistency
• FFS acceptable failures:

– May lose some data on crash
– May see someone else’s previously deleted data

• Applications must zero data out if they wish to avoid this + fsync
– May have to spend time to reconstruct free list

11/13/2008CS 3204 Fall 2008 15

May have to spend time to reconstruct free list
– May find unattached inodes → lost+found

• Unacceptable failures:
– Inability to bring filesystem back into consistent state via fsck
– After crash, get active access to someone else’s data

• Either by pointing at reused inode or reused blocks
• FFS uses 2 synchronous writes on each metadata operation that

creates/destroys inodes or directory entries, e.g., creat(), unlink(),
mkdir(), rmdir()

– Note: assumption here is that eviction order in underlying buffer cache is not
controllable, hence need for synchronous writes

Write Ordering & Logging
• Problem (1) with using synchronous writes

– Updates proceed at disk speed rather than CPU/memory speed
• Problem (2) with using fsck

– complexity proportional to used portion of disk
– takes several hours to check GB-sized modern disks

• In the early 90s approaches were developed that

11/13/2008CS 3204 Fall 2008 16

• In the early 90s, approaches were developed that
– Reduced the need for synchronous writes
– Avoided need for fsck after crash

• Two classes of approaches:
– Write-ordering (aka Soft Updates)

• BSD – the elegant approach
– Journaling (aka Logging)

• Used in VxFS, NTFS, JFS, HFS+, ext3, reiserfs

Write Ordering
• Instead of synchronously writing, record dependency in

buffer cache
– On eviction, write out dependent blocks before evicted block:

disk will always have a consistent or repairable image
– Repairs can be done in parallel to using the filesystem – don’t

require delay on system reboot
E l

11/13/2008CS 3204 Fall 2008 17

• Example:
– Must write block containing new inode before block containing

changed directory pointing at inode
• Can completely eliminate need for synchronous writes
• Can do deletes in background after zeroing out directory

entry & noting dependency
• Can provide additional consistency guarantees: e.g.,

make data blocks dependent on metadata blocks

Write Ordering: Cyclic Dependencies

11/13/2008CS 3204 Fall 2008 18

• Tricky case: A should be written before B, but B should be written
before A? … must unravel by introducing intermediate versions

Recommended
Reading:
See [Ganger 2000]
for more information

4

Logging File Systems
• Idea from databases: keep track of changes

– “write-ahead log” or “journaling”: modifications are
first written to log before they are written to actually
changed locations

– reads bypass log

11/13/2008CS 3204 Fall 2008 19

eads bypass og
• After crash, trace through log and

– redo completed metadata changes (e.g., created an
inode & updated directory)

– undo partially completed metadata changes (e.g.,
created an inode, but didn’t update directory)

• Log must be kept in persistent storage

Logging Issues
• How much does logging slow normal operation

down?
• Log writes are sequential

– Can be fast, especially if separate disk is used
– Subtlety: log actually does not have to be written

11/13/2008CS 3204 Fall 2008 20

y g y
synchronously, just in-order & before the data to
which it refers!

• Can trade performance for consistency – write log
synchronously if strong consistency is desired

• Need to recycle log
– After “sync()”, can restart log since disk is known to

be consistent

Physical vs Logical Logging
• What & how should be logged?
• Physical logging:

– Store physical state that’s affected by a change
• before or after block (or both)

Ch i i t d (if ft) d (if b f)

11/13/2008CS 3204 Fall 2008 21

– Choice: easier to redo (if after) or undo (if before)
– Advantage: can retrofit logging independent of logic that

manipulates metadata representation

• Logical logging:
– Store operation itself as log entry (rename(“a”, “b”))
– More space-efficient, but can be tricky to implement since

metadata operation logic is involved in log replay

Summary

• File system consistency is important
• Any file system design implies metadata

dependency rules
• Designer needs to reason about state of file

11/13/2008CS 3204 Fall 2008 22

Designer needs to reason about state of file
system after crash & avoid unacceptable failures
– Needs to take worst-case scenario into account –

crash after every sector write
• Most current file systems use logging

– Various degrees of data/metadata consistency
guarantees

