
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 21

Announcements

• Project 3 due Nov 11, 11:59pm
• Additional office hours scheduled

11/6/2008CS 3204 Fall 2008 2

Filesystems

Files vs Disks

File Abstraction
• Byte oriented
• Names
• Access protection

Disk Abstraction
• Block oriented
• Block #s
• No protection

11/6/2008CS 3204 Fall 2008 4

• Access protection
• Consistency

guarantees

• No protection
• No guarantees

beyond block write

Filesystem Requirements

• Naming
– Should be flexible, e.g., allow multiple names for

same files
– Support hierarchy for easy of use

11/6/2008CS 3204 Fall 2008 5

• Persistence
– Want to be sure data has been written to disk in case

crash occurs
• Sharing/Protection

– Want to restrict who has access to files
– Want to share files with other users

FS Requirements (cont’d)
• Speed & Efficiency for different access patterns

– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

11/6/2008CS 3204 Fall 2008 6

• Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

• Twist: all metadata that is required to do translation must
be stored on disk
– Translation scheme should minimize number of additional

accesses for a given access pattern
– Harder than, say page tables where we assumed page tables

themselves are not subject to paging!

2

Filesystems

Software Architecture
(including in-memory data

structures)

Overview
File Operations:

create(), unlink(), open(),
read(), write(), close()

• Uses names for files
• Views files as
sequence of bytes

Must implement translation
(file name file offset) →

11/6/2008CS 3204 Fall 2008 8

Buffer Cache

Device Driver

File System

Uses disk id + sector
indices

(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk

The Big Picture

…
5
4
3

Data structures to keep
track of open files

struct file
inode + position + …

Per-process
file descriptor
table

Buffer C
a Directory

File Data

11/6/2008CS 3204 Fall 2008 9

PCB

3
2
1
0

struct dir
inode + position

struct inode

ache

Open file table
Filesystem
Information

File Descriptors
(inodes)

Directory
Data

Cached data and
metadata in buffer
cache

On-Disk
Data Structures

?

Steps in Opening & Reading a File

• Lookup (via directory)
– find on-disk file descriptor’s block number

• Find entry in open file table (struct inode
list in Pintos)

11/6/2008CS 3204 Fall 2008 10

list in Pintos)
– Create one if none, else increment ref count

• Find where file data is located
– By reading on-disk file descriptor

• Read data & return to user

Open File Table
• inode – represents file

– at most 1 in-memory instance per unique file
– #number of openers & other properties

• file – represents one or more processes using
an file

With t ff t f b t t

11/6/2008CS 3204 Fall 2008 11

– With separate offsets for byte-stream
• dir – represents an open directory file
• Generally:

– None of data in OFT is persistent
– Reflects how processes are currently using files
– Lifetime of objects determined by open/close

• Reference counting is used

File Descriptors (“inodes”)
• Term “inode” can refer to 3 things:

1. in-memory inode
– Store information about an open file, such as how many

openers, corresponds to on-disk file descriptor
2. on-disk inode

11/6/2008CS 3204 Fall 2008 12

– Region on disk, entry in file descriptor table, that stores
persistent information about a file – who owns it, where to
find its data blocks, etc.

3. on-disk inode, when cached in buffer cache
– A bytewise copy of 2. in memory

– Q.: Should in-memory inode store a pointer to
cached on-disk inode? (Answer: No.)

3

Filesystems

On-Disk Data Structures and
Allocation Strategies

Filesystem Information

• Contains “superblock”
stores information such as
size of entire filesystem, etc.
– Location of file descriptor table & free map

Free Block Map
0100011110101010101

Super Block

11/6/2008CS 3204 Fall 2008 14

• Free Block Map
– Bitmap used to find free blocks
– Typically cached in memory

• Superblock & free map often replicated in
different positions on disk

File Allocation Strategies

• Contiguous allocation
• Linked files
• Indexed files

11/6/2008CS 3204 Fall 2008 15

• Multi-level indexed files

Contiguous Allocation

• Idea: allocate files in contiguous blocks
• File Descriptor = (first block, length)
• Good sequential & random access

File A File B

11/6/2008CS 3204 Fall 2008 16

Good sequential & random access
• Problems:

– hard to extend files – may require expensive
compaction

– external fragmentation
– analogous to segmentation-based VM

• Pintos’s baseline implementation does this

Linked Files

• Idea: implement linked list
– either with variable sized blocks
– or fixed sized blocks (“clusters”)

File A
Part 1

File B
Part 1

File A
Part 2

File B
Part 2

11/6/2008CS 3204 Fall 2008 17

or fixed sized blocks (clusters)
• Solves fragmentation problem, but now

– need lots of seeks for sequential accesses and
random accesses

– unreliable: lose first block, may lose file
• Solution: keep linked list in memory

– DOS: FAT File Allocation Table

DOS FAT• FAT stored at beginning of disk &
replicated for redundancy

• FAT cached in memory
• Size: n-bit entries, m-bit blocks →

2^(m+n) limit
– n=12, 16, 28
– m=9 … 15 (0.5KB-32KB)

• As disk size grows, m & n must
grow

1 6
2 0
3 5
4 -1
5 7
6 -1

11/6/2008CS 3204 Fall 2008 18

grow
– Growth of n means larger in-memory

table

6
7 11
8 0
9 -1

10 9
11 -1
12 10

Filename Length First Block
“a” 2 1
“b” 4 3
“c” 3 12
“d” 1 4

4

DOS FAT Scalability Limits
• FAT-12 uses 12 bit entries, max of 4096 clusters

– FAT-16: 65536 clusters, FAT-32 uses 28bits, so
theoretical max of 2^28 (1 Gi) clusters

• Floppy disk, say 1.4MB; FAT-12, 1K clusters,
need 1,400 entries, 2 bytes each -> 2.8KB

11/6/2008CS 3204 Fall 2008 19

• Modern disk, say ~500 GB (~2^41 bytes)
– At 4 KB cluster size, would need 2^29 entries. Each

entry at 4 bytes, would need 2^31 bytes, or 2GB,
RAM just to hold the FAT.

– At 32 KB cluster size, would need only 1/8, but still
256MB RAM to hold FAT; simple operations, such as
determining how much space is free on disk, require
reading entire FAT

Blocksize Trade-Offs

11/6/2008CS 3204 Fall 2008 20

• Chart above assumes all files are 2KB in size (observed median file
size is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes

per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

• Source: Tanenbaum, Modern Operating Systems

Indexed Allocation

• Single-index: specify maximum filesize,
t i d th t bl k i

File A
Part 1

File A
Part 2

File A
Index

File A
Part 3

11/6/2008CS 3204 Fall 2008 21

create index array, then note blocks in
index
– Random access ok – one translation step
– Sequential access requires more seeks –

depending on contiguous allocation
• Drawback: hard to grow beyond maximum

Multi-Level Indices
• Used in Unix &

(possibly) Pintos
(P4)

1
2
3
..
N

1

2

N

N+IN+1

Direct
Blocks

11/6/2008CS 3204 Fall 2008 22

N
FLI
SLI
TLI

index

index2

index

index

N+IN+1

N+I+1

index3 index2

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index N+I+I2

Logical View (Per File) offset in file

11/6/2008CS 3204 Fall 2008 23

34350 1 2 3 4 5 6 7 121314 2021 2728

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

Logical View (Per File) offset in file

3
2
1

8
7
6

…
18
19

17
16
15
14

11/6/2008CS 3204 Fall 2008 24

34350 1 2 3 4 5 6 7 121314 2021 2728

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

…
5
12

4

…
10
11

9
8

…
-1
-1

34
27
20
13

5

Multi-Level Indices
• If filesz < N * BLKSIZE, can store all information

in direct block array
– Biased in favor of small files (ok because most files

are small…)
• Assume index block stores I entries

11/6/2008CS 3204 Fall 2008 25

• Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

• Q.: What’s the maximum size before we need
triple-indirect block?

• Q.: What’s the per-file overhead (best case,
worst case?)

