
CS 3204
Operating Systemsp g y

Godmar Back

Lecture 20

Announcements

• Project 3 due Nov 11, 11:59pm
• Additional Office Hours scheduled

– See forum for when

11/6/2008CS 3204 Fall 2008 2

Disks & Filesystems

Disk Schematics

11/6/2008CS 3204 Fall 2008 4

Source: Micro House PC
Hardware Library Volume I:
Hard Drives

See narrated flash animation at
http://cis.poly.edu/cs2214rvs/disk.swf

Tracks, Sectors, Cylinders

11/6/2008CS 3204 Fall 2008 5

Hard Disk
Example

11/6/2008CS 3204 Fall 2008 6

Seagate Barracuda 7200.11

Typical Disk Parameters

• 2-30 heads (2 per platter)
– Modern disks: no more than 4 platters

• Diameter: 2.5” – 14”

11/6/2008CS 3204 Fall 2008 7

• Capacity: 20MB-1500GB
• Sector size: 64 bytes to 8K bytes

– Most PC disks: 512 byte sectors
• 700-20480 tracks per surface
• 16-1600 sectors per track

What’s important about disks from
OS perspective

• Disks are big & slow - compared to RAM
• Access to disk requires

– Seek (move arm to track + time to settle) – to cross all tracks
anywhere from 20-50ms, on average takes 1/3.

– Rotational delay (wait for sector to appear under track) 7,200rpm
is 8.3ms per rotation, on average takes ½: 4.15ms rot delay

11/6/2008CS 3204 Fall 2008 8

– Transfer time (fast: 512 bytes at 960 Mbit/s is about 4.26µs)
• Seek+Rot Delay dominates
• Random Access is expensive

– and unlikely to get better
• Consequence:

– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers

Disk Scheduling
• Can use priority scheme (sometimes done)
• (absent priorities:) goal is to reduce average access time

by sending requests to disk controller in certain order
– Or, more commonly, have disk controller itself reorder requests

• SSTF: shortest seek time first
Like SJF in CPU scheduling guarantees minimum avg seek

11/6/2008CS 3204 Fall 2008 9

– Like SJF in CPU scheduling, guarantees minimum avg seek
time, but can lead to starvation

• SCAN: “elevator algorithm”
– Process requests with increasing track numbers until highest

reached, then decreasing etc. – repeat
• Variations:

– LOOK – don’t go all the way to the top without passengers
– C-SCAN: - only take passengers when going up

Accessing Disks

• Sector is the unit of atomic access
• Writes to sectors should always complete,

even if power fails
• Consequence of sector granularity:

11/6/2008CS 3204 Fall 2008 10

Consequence of sector granularity:
– Writing a single byte requires read-modify-

write void set_byte(off_t off, char b) {
char buffer[512];
block_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
block_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

Disks & Filesystems

11/6/2008CS 3204 Fall 2008 11

Buffer Cache

Disk Caching – Buffer Cache
• How much memory should be dedicated for it?

– In older systems (& Pintos), set aside a portion of physical
memory

– In newer systems, integrated into virtual memory system: e.g.,
page cache in Linux

• How should eviction be handled?

11/6/2008CS 3204 Fall 2008 12

• How should eviction be handled?
• How should prefetching be done?
• How should concurrent access be mediated (multiple

processes may be attempting to write/read to same
sector)?
– How is consistency guaranteed? (All accesses must go through

buffer cache!)
• What write-back strategy should be used?

Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

desc

desc

desc

desc

Cache Block Descriptor
- block_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers

11/6/2008CS 3204 Fall 2008 13

512 bytes

512 bytes

512 bytes

64

desc

desc

desc

- # of pending read/write
requests
- lock to protect above variables
- signaling variables to signal
availability changes
- usage information for eviction
policy
- data (pointer or embedded)

A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block

id h t bl k(t t h bl k *b)

11/6/2008CS 3204 Fall 2008 14

void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

Buffer Cache Rationale
class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer
pool assignment in
CS2606

Differences:

11/6/2008CS 3204 Fall 2008 15

• Do not combine allocating a buffer (a resource
management decision) with loading the data into the
buffer from file (which is not always necessary)

• Provide a way for buffer user to say they’re done with the
buffer

• Provide a way to share buffer between multiple users
• More efficient interface (opaque type instead of block idx

saves lookup, constant size buffers)

Buffer Cache Sizing
• Simple approach

– Set aside part of physical memory for buffer cache/use
rest for virtual memory pages as page cache – evict
buffer/page from same pool

• Disadvantage: can’t use idle memory of other pool -
usually use unified cache subject to shared eviction
policy

11/6/2008CS 3204 Fall 2008 16

policy
• Windows allows user to limit buffer cache size

– (“Adjust for best performance of programs”)
• Problem:

– Bad prediction of buffer cache accesses can result in poor
VM performance (and vice versa)

– Specifically, don’t want large sequential file accesses to
evict program pages

Buffer Cache Replacement
• Similar to VM Page Replacement, differences:

– Can do exact LRU (because client must call
cache_get_block()!)

– But LRU hurts when long sequential accesses –
should use MRU (most recently used) instead.

E l f t i ABCDABCDABCD

11/6/2008CS 3204 Fall 2008 17

• Example reference string: ABCDABCDABCD,
can cache 3 blocks:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions would there be with

(most-recently-used) MRU?
• Also: not all blocks are equally important, benefit

from some hits more than from others

Buffer Cache Writeback Strategies

• Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

• (Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit

11/6/2008CS 3204 Fall 2008 18

Makes individual writes faster just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

• Problem: what if system crashes before you’ve
written data back?
– Trade-off: performance in no-fault case vs. damage

control in fault case
– If crash occurs, order of write-back can matter

Writeback Strategies (2)
• Must write-back on eviction (naturally)
• Periodically (every 30 seconds or so)
• When user demands:

– fsync(2) writes back all modified data belonging to
one file – database implementations use this

11/6/2008CS 3204 Fall 2008 19

one file database implementations use this
– sync(1) writes back entire cache

• Some systems guarantee write-back on file
close
– But not all, since many files are used in

open/write/close/open/read/close/delete sequence
• Some systems (databases) bypass OS buffer

cache (O_SYNC flag)

Buffer Cache
Prefetching
• Would like to bring next block to

be accessed into cache before
it’s accessed
– Exploit “Spatial locality”

• Must be done in parallel
– use daemon thread and

producer/consumer pattern

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}

11/6/2008CS 3204 Fall 2008 20

producer/consumer pattern
• Note: next(n) not always equal to

n+1
– although we try for it – via clustering

to minimize seek times
• Don’t initiate read_ahead if

next(n) is unknown or would
require another disk access to
find out

cache_readahead_daemon() {
while (true) {

q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

