
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 2

Announcements
• Please return your prerequisite forms if you

haven’t done so
• My office hours (MCB 637):

– Tu 8-9:15am
– Th 1:30pm-3:30pm (2:30pm if no one comes)

• TA office hours announced later today, check
website

• Start thinking about groups
– (but *do not* collaborate on Project 0)

• Project 0 due on Sep 7
– Other due dates posted later today

8/28/2008CS 3204 Fall 2008 2

Project 0
• Implement User-level Memory Allocator

– Use address-ordered first-fit

8/28/2008CS 3204 Fall 2008 3

used blockfree blockfree list

start enduser object user object

Outline for today

• Motivation for teaching OS
• Brief history
• A survey of core issues OS address

8/28/2008CS 3204 Fall 2008 4

• What you should get out of this class

Why are OS interesting?
• OS are “magic”

– Most people don’t understand them – including
sysadmins and computer scientists!

• OS are incredibly complex systems
“Hello World” program really 1 million lines of code

8/28/2008CS 3204 Fall 2008 5

– Hello, World – program really 1 million lines of code
• Studying OS is learning how to deal with

complexity
– Abstractions (+interfaces)
– Modularity (+structure)
– Iteration (+learning from experience)

What does an OS do?

• Software layer that sits
between applications
and hardware

gcc csh X11

8/28/2008CS 3204 Fall 2008 6

• Performs services
– Abstracts hardware
– Provides protection
– Manages resources

Hardware
CPU Memory Network Disk

Operating System

2

OS vs Kernel
• Can take a wider view or a narrower definition what an

OS is
• Wide view: Windows, Linux, Mac OSX are operating

systems
– Includes system programs, system libraries, servers, shells, GUI

t

8/28/2008CS 3204 Fall 2008 7

etc.
• Narrow definition:

– OS often equated with the kernel.
– The Linux kernel; the Windows executive – the special piece of

software that runs with special privileges and actually controls
the machine.

• In this class, usually mean the narrow definition.
• In real life, always take the wider view. (Why?)

Evolution of OS

• OSs as a library
– Abstracts away hardware, provide neat

interfaces
• Makes software portable; allows software evolution

8/28/2008CS 3204 Fall 2008 8

– Single user, single program computers
• No need for protection: no malicious users, no

interactions between programs
– Disadvantages of uniprogramming model

• Expensive
• Poor utilization

Evolution of OS (II)
• Invent multiprogramming

– First multi-programmed batch systems, then time-
sharing systems

• Idea:
Load multiple programs in memory

8/28/2008CS 3204 Fall 2008 9

– Load multiple programs in memory
– Do something else while one program is waiting, don’t

sit idle (see next slide)
• Complexity increases:

– What if programs interfere with each other (wild
writes)

– What if programs don’t relinquish control (infinite loop)

Single Program vs Multiprogramming

8/28/2008CS 3204 Fall 2008 10

Protection
• Multiprogramming requires isolation
• OS must protect/isolate applications from each

other, and OS from applications
• This requirement is absolute

8/28/2008CS 3204 Fall 2008 11

– In Pintos also: if one application crashes, kernel
should not! Bulletproof.

• Three techniques
– Preemption
– Interposition
– Privilege

Protection #1: Preemption

• Resource can be given to program and access
can be revoked
– Example: CPU, Memory, Printer, “abstract” resources:

files, sockets

8/28/2008CS 3204 Fall 2008 12

• CPU Preemption using interrupts
– Hardware timer interrupt invokes OS, OS checks if

current program should be preempted, done every
4ms in Linux

– Solves infinite loop problem!
• Q.: Does it work with all resources equally?

3

Protection #2: Interposition

• OS hides the hardware
• Application have to go through OS to

access resources
OS i t h k

8/28/2008CS 3204 Fall 2008 13

• OS can interpose checks:
– Validity (Address Translation)
– Permission (Security Policy)
– Resource Constraints (Quotas)

Protection #3: Privilege
• Two fundamental modes:

– “kernel mode” – privileged
• aka system, supervisor or monitor mode
• Intel calls its PL0, Privilege Level 0 on x86

– “user mode” – non-privileged
PL3 86

8/28/2008CS 3204 Fall 2008 14

• PL3 on x86
• Bit in CPU – controls operation of CPU

– Protection operations can only
be performed in kernel mode.
Example: hlt

– Carefully control transitions
between user & kernel mode

int main()
{

asm(“hlt”);
}

OS as a Resource Manager

• OS provides illusions, examples:
– every program is run on its own CPU
– every program has all the memory of the

machine (and more)

8/28/2008CS 3204 Fall 2008 15

– every program has its own I/O terminal
• “Stretches” resources

– Possible because resource usage is bursty,
typically

• Increases utilization

Resource Management (2)
• Multiplexing increases complexity
• Car Analogy (by Rosenblum):

– Dedicated road per car would be incredibly inefficient, so cars
share freeway. Must manage this.

– (abstraction) different lanes per direction
(h i ti) t ffi li ht

8/28/2008CS 3204 Fall 2008 16

– (synchronization) traffic lights
– (increase capacity) build more roads

• More utilization creates contention
– (decrease demand) slow down
– (backoff/retry) use highway during off-peak hours
– (refuse service, quotas) force people into public transportation
– (system collapse) traffic jams

Resource Management (3)

• OS must decide who gets to use what
resource

• Approach 1: have admin (boss) tell it
A h 2 h t ll it

8/28/2008CS 3204 Fall 2008 17

• Approach 2: have user tell it
– What if user lies? What if user doesn’t know?

• Approach 3: figure it out through feedback
– Problem: how to tell power users from

resource hogs?

Goals for Resource Management

• Fairness
– Assign resources equitably

• Differential Responsiveness
– Cater to individual applications’ needs

8/28/2008CS 3204 Fall 2008 18

Cater to individual applications needs
• Efficiency

– Maximize throughput, minimize response
time, support as many apps as you can

• These goals are often conflicting.
– All about trade-offs

4

Summary: Core OS Functions

• Hardware abstraction through interfaces
• Protection:

– Preemption
I t iti

8/28/2008CS 3204 Fall 2008 19

– Interposition
– Privilege (user/kernel mode)

• Resource Management
– Virtualizing of resources
– Scheduling of resources

