
CS 3204
Operating Systemsp g y

Godmar Back

Lecture 19

Announcements

• Project 3 due Nov 11, 11:59pm

11/4/2008CS 3204 Fall 2008 2

VM Design Issues &
Techniques

11/4/2008CS 3204 Fall 2008 3

q

of Page Faults vs Frame Allocation

11/4/2008CS 3204 Fall 2008 411/4/2008 4

• Desired behavior of paging algorithm: reduce page fault
rate below “acceptable level” as number of available
frames increases

• Q.: does increasing number of physical frames always
reduce page fault rate?
– A.: usually yes, but for some algorithms not guaranteed

(“Belady’s anomaly”)

Page Buffering
• Select victim (as dictated by page replacement algorithm

– works as an add-on to any algorithm we discussed)
• But don’t evict victim – put victim on tail of victim queue.

Evict head of that queue instead.
• If victim page is touched before it moves to head of

victim queue simply reuse frame

11/4/2008CS 3204 Fall 2008 511/4/2008 5

victim queue, simply reuse frame
• Further improvement: keep queue of unmodified victims

(for quick eviction – aka free page list) and separate
queue of modified pages (aka modified list - allows write-
back in batch)

• Related issue: when should you write modified pages to
disk?
– Options: demand cleaning vs pre-cleaning (or pre-flushing)

Local Replacement
• So far, considered global replacement policies

– Most widely used
• But could also divide memory in pools

– Per-process or per-user
• On frame allocation, requesting process will evict pages

11/4/2008CS 3204 Fall 2008 611/4/2008 6

q g p p g
from pool to which it belongs

• Advantage: Isolation
– No between-process interference

• Disadvantage: Isolation
– Can’t temporarily “borrow” frames from other pools

• Q.: How big should pools be?
– And when should allocations change?

P1used P2usedP2free

?

When Virtual Memory works well

• Locality
– 80% of accesses are to 20% of pages
– 80% of accesses are made by 20% of code

• Temporal locality:
– Page that’s accessed will be accessed again in near

11/4/2008CS 3204 Fall 2008 711/4/2008 7

Page that s accessed will be accessed again in near
future

• Spatial locality:
– Prefetching pays off: if a page is accessed,

neighboring page will be accessed
• If VM works well, average access to all memory

is about as fast as access to physical memory

VM Access Time & Page Fault Rate

• Consider expected access time in terms of fraction p of
page accesses that don’t cause page faults.

• Then 1-p is page fault frequency

access time = p * memory access time
+ (1-p) * (page fault service time + memory access time)

11/4/2008CS 3204 Fall 2008 811/4/2008 8

p p g q y
• Assume p = 0.99, assume memory is 100ns fast, and

page fault servicing takes 10ms – how much slower is
your VM system compared to physical memory?

• access time = 99ns + 0.01*(10000100) ns ≈ 100,000ns
or 0.1ms
– Compare to 100ns or 0.0001ms speed ≈ about 1000x slowdown

• Conclusion: even low page fault rates lead to huge
slowdown

Thrashing: When Virtual Memory
Does Not Work Well

• System accesses a page, evicts another page
from its frame, and next access goes to just-
evicted page which must be brought in

• Worst case a phenomenon called Thrashing

11/4/2008CS 3204 Fall 2008 911/4/2008 9

g
– leads to constant swap-out/swap-in
– 100% disk utilization, but no process makes progress

• CPU most idle, memory mostly idle

When does Thrashing occur?

• Process does exhibit locality, but is simply
too large
– Here: (assumption of) locality hurts us

Process doesn’t exhibit locality

11/4/2008CS 3204 Fall 2008 1011/4/2008 10

• Process doesn t exhibit locality
– Does not reuse pages

• Processes individually fit & exhibit locally,
but in total are too large for the system to
accommodate all

What to do about Thrashing?
• Buy more memory

– ultimately have to do that
– increasing memory sizes ultimately reason why

thrashing is nowadays less of a problem than in the
past – still OS must have strategy to avoid worst case

• Ask user to kill process

11/4/2008CS 3204 Fall 2008 1111/4/2008 11

Ask user to kill process
• Let OS decide to kill processes that are thrashing

– Linux has an option to do that (see next slide)
• In many cases, still: reboot only time-efficient

option
– But OS should have reasonable strategy to avoid it if it

can

An aircraft company discovered that it was cheaper to fly its planes with
less fuel on board. The planes would be lighter and use less fuel and
money was saved. On rare occasions however the amount of fuel was
insufficient, and the plane would crash. This problem was solved by the
engineers of the company by the development of a special OOF (out-of-
fuel) mechanism. In emergency cases a passenger was selected and
thrown out of the plane. (When necessary, the procedure was repeated.) A
large body of theory was developed and many publications were devoted
to the problem of properly selecting the victim to be ejected. Should the
victim be chosen at random? Or should one choose the heaviest person?

11/4/2008CS 3204 Fall 2008 12

Or the oldest? Should passengers pay in order not to be ejected, so that
the victim would be the poorest on board? And if for example the heaviest
person was chosen, should there be a special exception in case that was
the pilot? Should first class passengers be exempted? Now that the OOF
mechanism existed, it would be activated every now and then, and eject
passengers even when there was no fuel shortage. The engineers are still
studying precisely how this malfunction is caused.

Source: lkml (Andries Brouwer), 2004

OS Strategies to prevent thrashing

• Or contain its effects
• Define: “working set” (1968, Denning)
• Set of pages that a process accessed during

some window/period of length T in the past

11/4/2008CS 3204 Fall 2008 1311/4/2008 13

some window/period of length T in the past
– Hope that it’ll match the set accessed in the future

• Idea: if we can manage to keep working set in
physical memory, thrashing will not occur

Working Set
• Suppose we know or can estimate working set –

how could we use it?
• Idea 1: give each process as much memory as

determined by size of its WS
• Idea 2: preferably evict frames that hold pages

that don’t seem to be part of WS

11/4/2008CS 3204 Fall 2008 1411/4/2008 14

that don t seem to be part of WS
• Idea 3: if WS cannot be allocated, swap out

entire process (and exclude from scheduling for
a while)
– “medium term scheduling”, “swap-out scheduling”
– (Suspended) inactive vs active processes
– Or don’t admit until there’s enough frames for their

WS (“long term scheduling”)

Estimating Working Set
• Compute “idle time” for each page

– Amount of CPU time process received since last access to page
• On page fault, scan resident pages

– If referenced, set idle time to 0
– If not referenced, idle_time += time since last scan

11/4/2008CS 3204 Fall 2008 1511/4/2008 15

– If idle_time > T, consider to not be part of working set
• This is known as working set replacement algorithm

[Denning 1968]
• Variation is WSClock [Carr 1981]

– treats working set a circular list like global clock does, and
updates “time of last use” (using a process’s CPU use as a
measure) – evicting those where
T_last < T_current - T

Page Fault Frequency
• Alternative method of working set estimation

– PFF: # page faults/instructions executed
– Pure CPU perspective vs memory perspective

provided by WSClock
• Below threshold – can take frames away from

11/4/2008CS 3204 Fall 2008 1611/4/2008 16

y
process

• Above threshold – assign more frames
• Far above threshold – suspect thrashing & swap

out
• Potential drawback: can be slow to adopt to

periods of transition

Clock-PRO
• Clock and algorithms like it

try to approximate LRU:
– LRU does not work well for:
– Sequential scans, large loops

• Alternative:

11/4/2008CS 3204 Fall 2008 1711/4/2008 17

– Reuse distance: should replace page with large reuse
distance

• Clock-PRO: Idea – extend our focus by
remembering information about pages that were
evicted from frames previously

• See [Jiang 2005]

Segmentation

11/4/2008CS 3204 Fall 2008 18

Segmentation

• Historical alternative to paging
• Instead of dividing virtual address space in

many small, equal-sized pages, divide into
a few large segments

11/4/2008CS 3204 Fall 2008 1911/4/2008 19

a few, large segments
• Virtual address is then (segment number,

segment offset)
segno segmentoffset

Segment Table
seg base | seg limit

m
em

ory

+
< limit?

Segmentation (2)
• Advantages:

– little internal fragmentation “segments can be sized
just right”

– easy sharing – can share entire code segment
– easy protection – only have to set access privileges

f t

11/4/2008CS 3204 Fall 2008 2011/4/2008 20

for segment
– small number of segments means small segment

table sizes
• Disadvantages:

– external fragmentation (segments require physically
continuous address ranges!)

– if segment is partially idle, can’t swap out

Segmentation (3)
• Pure segmentation is no longer used

– (Most) RISC architectures don’t support segmentation at all
– Other architectures combine segmentation & paging

• Intel x86 started out with segmentation, then added
paging
– Segment number is carried in special set of registers (GS, ES,

FS SS) point to “selectors” kept in descriptor tables

11/4/2008CS 3204 Fall 2008 2111/4/2008 21

FS, SS), point to selectors kept in descriptor tables
– Instruction opcode determines with segment is used
– Today: segmentation unit is practically unused (in most 32-bit

OS, including Pintos): all segments start at 0x00000000 and end
at 0xFFFFFFFF (Exception: for thread-local data!)

– Do not confuse with Pintos’s code/data segments, which are
linear subregions of virtual addresses spanning multiple virtual
pages

• Note: superpages are somewhat of a return to
segmentation

Combining Segmentation & Paging

11/4/2008CS 3204 Fall 2008 2211/4/2008 22

Mem Mgmt Without Virtual Memory

• Problems that occur when VM is lacking
motivate need for it, historically
– But still important for VM-less devices (embedded

devices, etc.)
• Imagine if we didn’t have VM, it would be hard or

i ibl t

11/4/2008CS 3204 Fall 2008 2311/4/2008 23

impossible to
– Retain the ability to load a program anywhere in

memory
– Accommodate programs that grow or shrink in size
– Use idle memory for other programs quickly
– Move/relocate a running program in memory

• VM drastically simplifies systems design

