
1

CS 3204
Operating Systems

Godmar Back

Lecture 18

Physical Memory
Management

10/30/2008CS 3204 Fall 2008 3

Physical Memory Management

• Aka frame table management
• Task: keep efficiently track of

which physical frames are used
• Allocate a frame when paging in,

or eager loading
• Deallocate a frame when

process exits or when page is
evicted (later) 0

MAX_PHYSICAL

frames

10/30/2008CS 3204 Fall 2008 4

Approach 1: Bitmaps
• Use bitmap to represent free,

used pages
• Sometimes division in user &

kernel pool
• Pintos (palloc.c) does that: keeps

two bitmaps
– Kernel pool: 010010
– User pool: 0000001

• You will manage user pool only

0

MAX_PHYSICAL

frames 0100100000001

us
er

po
ol

ke
rn

el
po

ol

10/30/2008CS 3204 Fall 2008 5

Approach 2: Buddy Allocator
• Logically

subdivide
memory in
power- of-two
blocks

• Round up on
allocation to
next power
of 2

• Split block on
allocation
(if necessary)

• Coalesce on deallocation (if possible)
– Coalescing can be delayed

• Used in Linux: allocation requests are always multiple of pages, max
blocksize is 4MB

10/30/2008CS 3204 Fall 2008 6

Buddy Allocator Freelists

• Note: tree view is conceptual, not tree is
actually built in implementation

• Implementation uses n freelists for free
blocks of order k, representing allocation
sizes of 2^(k+B) bytes.
– E.g., Linux uses orders 0-10 for 4KB, 8KB, …

4MB or 2^(0+12) … 2^(10+12) bytes.
– Note that free list is kept entirely inside

unused pages – unlike bitmaps, no additional
memory is needed



2

10/30/2008CS 3204 Fall 2008 7

Buddy Example - Allocation
64 KB

16KB16KB 32KB

16KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB16KB 32KB4KB4KB

Alloc (16KB)

Alloc (32KB)

Alloc (4KB)

Alloc (4KB)

Alloc (4KB)

10/30/2008CS 3204 Fall 2008 8

Buddy Example - Deallocation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

10/30/2008CS 3204 Fall 2008 9

Fragmentation

• Def: The inability to use memory that is
unused.

• Internal fragmentation:
–Not all memory inside an allocated unit is

used; rest can’t be allocated to other users
• External fragmentation:

– Impossible to satisfy allocation request even
though total amount of memory > size
requested

10/30/2008CS 3204 Fall 2008 10

Internal Fragmentation
64 KB

16KB12KB 32KB

16KB 24KB

4KB 4KB 8KB

4KB 4KB 8KB

4KB 4KB 4KB3KB

Alloc (12KB)

Alloc (24KB)

Alloc (4KB)

Alloc (4KB)

Alloc (3KB)

12KB

12KB

12KB

12KB

24KB

24KB

24KB

10/30/2008CS 3204 Fall 2008 11

External Fragmentation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

Have 8 KB free, but can‘t Alloc(8KB)

Have 12 KB free, but can‘t Alloc(12KB)

No external fragmentation

No external fragmentation

10/30/2008CS 3204 Fall 2008 12

Buddy Allocator & Fragmentation

• Q.: what is the average internal fragmentation
(per allocated object) for
– buddy allocator with size 2^n?
– in bitmap allocator for objects of size n*s, where each

bit represents a unit of size s?
– in first-fit allocator from project 0?

• Q.: what external fragmentation can you expect
from buddy allocator scheme?

• Q.: what’s a good way to measure fragmentation
in general?



3

10/30/2008CS 3204 Fall 2008 13

Page Size & Fragmentation
• How should a system’s architect choose the

page size? – Trade-Off
• Large pages:

– Larger internal fragmentation
– (not an issue if most pages are full…)
– Page-in & write-back cost larger

• Small pages:
– Higher overhead to store page table (more entries to

maintain)
• Modern architectures provide support for “super

pages” – 2MB or 4MB

10/30/2008CS 3204 Fall 2008 14

Page Replacement

10/30/2008CS 3204 Fall 2008 1510/30/2008 15

Page Replacement Policies

• Goal: want to minimize number of (major) page faults
(situations where a page must be brought in from disk.)
– Also: want to reduce their cost (ideally, evict those pages from

their frames that are already on disk – save writeback time)
• Possible scopes in which replacement is done:

– Global replacement policies
• Treat frames used by all processes equally

– Local replacement polices
• Pool frames according to user or process when considering

replacement
– Hybrids

• Algorithms can be applied in these scopes

10/30/2008CS 3204 Fall 2008 1610/30/2008 16

Replacement Algorithms

• Optimal:
– “know the future”
– Obviously impractical, just a benchmark for

comparison/analysis

• FIFO – evict oldest page
• LRU – evict least recently used page

• Clock algorithm (“NRU”)
– Enhanced versions of clock

10/30/2008CS 3204 Fall 2008 1710/30/2008 17

Optimal or MIN Replacement

• To analyze algorithms, consider stream of accesses;
each access falls into a given page, e.g.
2 3 2 1 5 2 4 5 3 2 5 2

• Optimal (also known as MIN, or Belady’s algorithm)
– Replace the page that is accessed the farthest in the future, e.g.

that won’t be accessed for the longest time
• Problem: don’t know what the future holds

2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 2 2 4 4 4 2 2 2

3 3 3 3 3 3 3 3 3 3 3

1 5 5 5 5 5 5 5 5

10/30/2008CS 3204 Fall 2008 1810/30/2008 18

FIFO

• Evict oldest page:
– Problem: completely ignores usage pattern –

first pages loaded are often frequently
accessed

2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 5 5 5 5 3 3 3 3

3 3 3 3 2 2 2 2 2 5 5

1 1 1 4 4 4 4 4 2



4

10/30/2008CS 3204 Fall 2008 1910/30/2008 19

LRU

• Evict least-recently-used page
• Great if past = future: becomes MIN!
• Major problem: would have to keep track of

“recency” on every access, either by
timestamping, or move to front of a list
– Infeasible to do that at pipeline speed

2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 2 2 3 3 3 3

3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 2 2 2

10/30/2008CS 3204 Fall 2008 2010/30/2008 20

Clock
• Also known as NRU (Not Recently Used) or 2nd Chance
• Use access (or reference bit)

– R=1 was accessed
– R=0 was not accessed

• Hand moves & clears R
• Hand stops when it finds R==0
• Two ways to look at it:

– Approximation of LRU
– FIFO, but keep recently used pages

R=1
R=1

R=0

R=0R=1

R=0

R=1

10/30/2008CS 3204 Fall 2008 2110/30/2008 21

Clock Example
• In this example, assume hand advances only when allocation

requires eviction (as you can do for Pintos P3)
• To avoid running out of frames, one could use clock daemon that

periodically scans pages and resets their access bits (done in
Solaris)
– Q.: what if clock daemon scans too fast? – all pages appear unused
– Q.: what if too slow? – many pages appear used

• Or start scanning when #free pages falls below some watermark (as
done by kswapd in Linux)

2 3 2 1 5 2 4 5 3 2 5 2
2* 2 * 2* 2 * 5* 5 * 5* 5 * 3* 3* 3* 3*

3 * 3* 3 * 3 2 * 2* 2 * 2 2* 2 2*

1 * 1 1 4* 4 * 4 4 5* 5*

* means R=1 (page was accessed since last scan)

1

2

3

10/30/2008CS 3204 Fall 2008 2210/30/2008 22

Variations on Clock Algorithm

• 2-handed Clock
– If lots of frames, may need to scan many page frames

until one is found – so introduce second hand
• Leading hand clears ref bits
• Trailing hand evicts pages

• Enhanced Clock: exploit modified (or “dirty”) bit
– First find unreferenced & unmodified frames to evict
– Only if out of those, consider unreferenced & modified

frames
– Clear reference bit as usual

10/30/2008CS 3204 Fall 2008 2310/30/2008 23

N-bit Clock Algorithm

• 1-bit says was recently used or wasn’t
– But how recently?

• Idea: associate n-bit counter with page frame
– “age” or “act_count”
– have R-bit as before (provided by hardware)

• When hand passes page frame
– act_count >>= 1 aging
– act_count |= (R << (n-1)) recent access

• Replace page frame with lowest act_count


