CS 3204
Operating Systems

Lecture 18
Godmar Back

Virgini

mTech

Physical Memory
Management

Virgini

mTech

Physical Memory Management

» Aka frame table management MAX_PHYSICAL

» Task: keep efficiently track of
which physical frames are used

 Allocate a frame when paging in,
or eager loading

¢ Deallocate a frame when
process exits or when page is =—
evicted (later) 2o

frames

vugu’ﬁ-r 1 CS 3204 Fall 2008 10/30/2008 3

Approach 1: Bitmaps

MAX_PHYSICAL ° Use bitmap to represent free,

k used pages
« Sometimes division in user &
s kernel pool
g + Pintos (palloc.c) does that: keeps
5 two bitmaps
= — Kernel pool: 1 1
— User pool: 1
3 _ * You will manage user pool only
= ~—
‘ ‘—N RS
frames .
1001 1
Virgini,
%T&h CS 3204 Fall 2008 10/30/2008 4

Approach 2: Buddy Allocator

« Logically
subdivide
memory in 12k
Bower— of-two
locks

+ Round up on
allocation to

next power . ~
of 2 K { @

« Split block on {1\
allocation ik 00

(if necessary)

[IERE-ad@ K] Eak I Do 3K] %K
+ Coalesce on deallocation (if possible)
— Coalescing can be delayed
« Used in Linux: allocation requests are always multiple of pages, max
blocksize is 4AMB

V%T) €S 3204 Fall 2008 10/30/2008 5

Buddy Allocator Freelists

» Note: tree view is conceptual, not tree is
actually built in implementation

« Implementation uses n freelists for free
blocks of order k, representing allocation
sizes of 2”(k+B) bytes.
— E.g., Linux uses orders 0-10 for 4KB, 8KB, ...

4MB or 20+12) ... 2M10+12) bytes.

— Note that free list is kept entirely inside

unused pages — unlike bitmaps, no additional
memory is needed

.
VI@%T) €S 3204 Fall 2008 10/30/2008 6

Buddy Example - Allocation

64 KB

Alloc (16KB)
16KB \ 32KB

Alloc (32KB)

16KB
Alloc (4KB)
Alloc (4KB)
8KB
Alloc (4KB)

vm‘?ﬂmkh CS 3204 Fall 2008 10/30/2008 7

Buddy Example - Deallocation

ul
@
2

KB

Free()

64 KB

wkb CS 3204 Fall 2008 10/30/2008 8

Fragmentation

Def: The inability to use memory that is
unused.

Internal fragmentation:

—Not all memory inside an allocated unit is
used; rest can’t be allocated to other users

External fragmentation:

—Impossible to satisfy allocation request even
though total amount of memory > size
requested

CS 3204 Fall 2008 10/30/2008 9
QL

Internal Fragmentation

64 KB
Alloc (12KB)

-J 16KB \ 32KB

Alloc (24KB)

16KB

loc (4KB)

il o |

Alloc (4KB)

8KB
Alloc (3KB)

Joxe

_vmﬁumikch €S 3204 Fall 2008 10/30/2008 10

External Fragmentation

4KB

ree(No external fragmentation
KB
Free() Have 8 KB free, but can‘t Alloc(8KB)

Free() Have 12 KB free, but can‘t Alloc(12KB)

16KB

Free() No external fragmentation

32KB

Free()

64 KB

wkb CS 3204 Fall 2008 10/30/2008 1

Buddy Allocator & Fragmentation

¢ Q.: what is the average internal fragmentation
(per allocated object) for
— buddy allocator with size 2*n?
— in bitmap allocator for objects of size n*s, where each

bit represents a unit of size s?

— in first-fit allocator from project 0?

* Q.: what external fragmentation can you expect
from buddy allocator scheme?

* Q.:what's a good way to measure fragmentation
in general?

WM CS 3204 Fall 2008 10/30/2008 12
—

Page Size & Fragmentation

« How should a system'’s architect choose the
page size? — Trade-Off

* Large pages:
— Larger internal fragmentation
— (not an issue if most pages are full...)
— Page-in & write-back cost larger

* Small pages:
— Higher overhead to store page table (more entries to

maintain)

« Modern architectures provide support for “super

pages”— 2MB or 4MB

V%Tﬁch CS 3204 Fall 2008 10/30/2008 13

Page Replacement

V%Tﬁch CS 3204 Fall 2008 10/30/2008 14

Page Replacement Policies

» Goal: want to minimize number of (major) page faults
(situations where a page must be brought in from disk.)
— Also: want to reduce their cost (ideally, evict those pages from
their frames that are already on disk — save writeback time)
« Possible scopes in which replacement is done:
— Global replacement policies
 Treat frames used by all processes equally
— Local replacement polices

« Pool frames according to user or process when considering
replacement

— Hybrids
« Algorithms can be applied in these scopes

ngmuElT 1 CS 3204 Fall 2008 10/30/2008 15

Replacement Algorithms

* Optimal:
—“know the future”

— Obviously impractical, just a benchmark for
comparison/analysis

* FIFO — evict oldest page
* LRU — evict least recently used page

* Clock algorithm (“NRU”)
— Enhanced versions of clock

ngmuElT 1 CS 3204 Fall 2008 10/30/2008 16

Optimal or MIN Replacement

« To analyze algorithms, consider stream of accesses;
each access falls into a given page, e.g.
232152453252

« Optimal (also known as MIN, or Belady’s algorithm)

— Replace the page that is accessed the farthest in the future, e.g.
that won't be accessed for the longest time

¢ Problem: don’t know what the future holds

2 |32 |1]|5|2 (4|5 |32]|5]2
212|222 2|4 |4 4|2 2|2
3(3|3[3|3|]3 /3 3 3 /3 3
1]5|]5|5 5 5 &5 5 5

V%T) €S 3204 Fall 2008 10/30/2008 17

FIFO

« Evict oldest page:

— Problem: completely ignores usage pattern —
first pages loaded are often frequently

accessed
203 |2|1|s|2|als5|3|2|5]2
2|2 212 51|65 5|5 3 313 3
3 313 312 2 12 2 2 |5 5
10114 4 4 4 4 2
Vitgini
meedl €S 3204 Fall 2008 10/30/2008 18

LRU

 Evict least-recently-used page

e Great if past = future: becomes MIN!

« Major problem: would have to keep track of
“recency” on every access, either by
timestamping, or move to front of a list

— Infeasible to do that at pipeline speed

2|3]2|1|5]2]4]5]3][2]5]2
2 (222 2]2[2]2]3]3[3 3
3|3|3|5|5|5 5 5 5 5 5
1114 4 4 2 2 2
—
%Tﬁﬁh CS 3204 Fall 2008 10/30/2008 19

Clock

 Also known as NRU (Not Recently Used) or 2" Chance
» Use access (or reference bit)

— R=1was accessed

— R=0 was not accessed

* Hand moves & clears R R=1
» Hand stops when it finds R== R=1 R=1
* Two ways to look at it: /
R=0 R=0

— Approximation of LRU
— FIFO, but keep recently used pages

V%Tﬁch CS 3204 Fall 2008 10/30/2008 20

Clock Example

« In this example, assume hand advances only when allocation
requires eviction (as you can do for Pintos P3)

« To avoid running out of frames, one could use clock daemon that
periodically scans pages and resets their access bits (done in
Solaris)

— Q.:what if clock daemon scans too fast? — all pages appear unused
— Q.:what if too slow? —many pages appear used

« Or start scanning when #free pages falls below some watermark (as

done by kswapd in Linux)

* means R=1 (page was accessed since last scan)
N 2 |3]2|1]|5|2|4|5|3|2]|]5]2
— > 222 |5 |5 5 | 3 3 |3 3
C 2 1 3|3 |3 |3 |2]|2 202 2 2 2
;3 _— 1" 11 4 4 4 4 5 5
_v ini
%Tech CS 3204 Fall 2008 10/30/2008 21

Variations on Clock Algorithm

» 2-handed Clock
— If lots of frames, may need to scan many page frames
until one is found — so introduce second hand
 Leading hand clears ref bits
« Trailing hand evicts pages
Enhanced Clock: exploit modified (or “dirty”) bit
— First find unreferenced & unmodified frames to evict
— Only if out of those, consider unreferenced & modified
frames
— Clear reference bit as usual

fr—"
ngmuElT h CS 3204 Fall 2008 10/30/2008 22

N-bit Clock Algorithm

¢ 1-bit says was recently used or wasn't
— But how recently?

« l|dea: associate n-bit counter with page frame
—“age” or “act_count”

— have R-bit as before (provided by hardware)
When hand passes page frame
—act_count>>=1 aging

—act_count |= (R << (n-1)) recent access
* Replace page frame with lowest act_count

Virginia €S 3204 Fall 2008 10/30/2008 23

mTech

